
1 - Parameter Passing
! ...how a subroutine's parameter actually gets the argument

value

! (odd? but the name is probably based on some alternate
terminology:

" another name for parameter: formal parameter

" another name for argument: actual parameter)

2 - Parameter Passing in FORTRAN
! FORTRAN only provided a single parameter-passing mode;

! If I am reading MacLennan, Ch. 2, correctly, this can vary
depending on the FORTRAN implementation (!)

! HOWEVER, usually the parameter is bound to the address of
the argument;

" so, if the parameter is changed, so is the argument;

! This parameter-passing mode should already be familiar to
you ... it is more commonly known as...

3 - Pass-By-Reference
! So: consider this FORTRAN subroutine:

SUBROUTINE DIST (D, X, Y)
D = X - Y
IF (D .LT. 0) D = -D
RETURN
END
! ...and this fragment calling this subroutine:

DIST1 = 10
X1 = 20
Y1 = 30
CALL DIST (DIST1, X1, Y1)

! because parameter D is bound to argument DIST1's address,
when D is set to -10 and then 10, so is DIST1

4 - Pass-By-Reference - Advantages
! can be used for input and output and input/output parameters

! it is always reasonably efficient -- just copy over an address
(remember, efficiency was an important goal for FORTRAN)

" why just "reasonably"? Well, there is still a slight cost for
indirection --

" [MacLennan, p. 58] "Instead of the subprogram having the
value of the actual parameter directly available, it only has
the address of the actual"

" "Therefore, an extra memory reference is required to fetch
or store the value of a parameter passed by reference"

5 - Pass-By-Reference - Disadvantages
! ...it can have dangerous consequences

! one may ACCIDENTALLY change an argument one didn't
MEAN to;

! in early FORTRAN, MacLennan says that you COULD
even change a CONSTANT used as an argument this way...!
(p. 59)

6 - Pass-By-Value-Result
! another way of implementing FORTRAN's parameter

passing; arguably a bit more secure

! when the subroutine is called, the value of the argument is
copied into the parameter;

! when the subroutine exits, the result, or value of the
parameter at the time of the subroutine exit, is copied into
the argument;

! yes, the argument is still changed -- BUT since both of these
operations are done by the caller (accordingly to
MacLennan, p. 60), the compiler can know more easily to
omit the copying of the result into the argument if that
argument is a constant or expression (that is, a value that it
is not reasonable to change)

7 - Pass-By-Value-Result vs.
Pass-By-Reference

! pass-by-value-result OFTEN gives the same
result as pass-by-reference -- but NOT
ALWAYS;

! ...if aliasing is involved, for example, you
can get different results with these two
modes;

! consider this pseudocode (from Scott, p.
395):

x: integer;
 procedure foo (y: integer)
 y := 3
 print x
 ...
 x := 2
 foo(x)
 print x

8 - comparative example p. 1
! if x is passed by reference?

! when foo(x) is called, x's address is copied
into y

! see how, when y is changed within foo, x is
immediately changed?

! so, printing x within foo prints 3, as does
printing x after foo is complete;

! what this fragment outputs for pass-by-
reference:

3
3

2x

y

9 - comparative example p. 2
! if x is passed by value-result?

! when foo(x) is called, x's value is copied
into y

! see how, when y is changed within foo, x is
NOT immediately changed?

! so, printing x within foo prints 2

! BUT -- when foo is complete, y's value, 3, is
copied back into argument x; NOW x
becomes 3. Printing x after foo will show 3.

! what this fragment outputs for pass-by-value-
result:

2
3

2x

y 2

10 - Algol-60's approach
! [MacLennan p. 129] "...the problem with

FORTRAN's parameters results from the
failure to distinguish parameters intended for
input from those intended for output (or
both input and output)."

! "Algol-60 attempted to solve this problem by
providing two parameter-passing modes:

" pass-by-value for input parameters and

" pass-by-name for all other kinds of
parameters."

! Pass-by-value you should already know --
that's the default for C++ scalar parameters:

" the value of the argument is COPIED to
the parameter;

" ...change the parameter? You only change
that local copy, NOT the argument

11 - Algol-60's approach, cont'd
! interestingly, pass-by-name is the DEFAULT

for Algol-60, and you only get pass-by-value
if you explicitly SPECIFY it:

real procedure Sum (k, l, u, ak)
 value l, u;
 integer k, l, u;
 real ak;
 begin
 ...
 end;

! see how l and u are specified to be pass-by-
value?

! since this isn't specified for k and ak, those
are pass-by-name

12 - pass-by-name, p. 1
! consider the so-called copy rule for

subroutine invocation:

" a subroutine call can be replaced by its
body with the parameters replaced by its
arguments

! EXCEPT -- we know, from experience, that
this is NOT always the case for pass-by-
value or pass-by-reference or pass-by-value-
result!

! ...pass-by-name attempts to REALLY do this,
though!

13 - pass-by-name, p. 2
! Consider:

procedure Inc(n);
 integer n;
 begin
 n := n + 1;
 end;
! with pass-by-name, the call:

Inc(i)
...should have the same effect as if it were

 replaced with:

i := i + 1;
! ...and the call

Inc(A[k])
...should have the same effect as if it were

 replaced with:
A[k] := A[k] + 1;

! ...so, meets Algol's output parameter need;

14 - examples, p. 1
! isn't pass-by-name just the same as pass-by-

reference, then? NO, not always!

! Consider:

procedure S (el, k);
 integer el, k;
 begin
 k := 2;
 el := 0;
 end;
! Assume we have the following fragment of

code:

A[1] := 1;
A[2] := 1;
i := 1;
S (A[i], i);

! what would happen?

15 - examples, p. 2
! for pass-by-name:

! Since the effect of pass-by-name is supposed
to be as though the arguments were literally
substituted for the parameters, then:

S(A[i], i)
! should be the same as:

 i := 2;
 A[i] := 0;

! ...what is actually happening here, then?

! argument i is really set to 2;

! and so it is A[2] that gets set to 0,

! and A[1] is unchanged!

! upon return:

A[1] = 1, i = 2, A[2] = 0

16 - examples, p. 3
! IF Algol had pass-by-reference:

S(A[i], i)
! i is 1 at the time of this call, so the address

of A[1] is copied into el -- any changes to
el will change A[1]

! the address of i is copied into k -- any
changes to k will change i

! so, k := 2; ...sets i to 2,

! and el := 0; ...sets A[1] to 0

! "[MacLennan, p. 130] "The fact that in the
meantime i has been changed to 2 has no
effect on el since the reference to A(i) was
computed at run time."

! upon return:

A[1] = 0, i = 2, A[2] = 1

17 - examples, p. 4
! and if these parameters were pass-by-value,

S(A[i], i)
! The values of A[1] and and i would be

copied into el and k;

! el and k would be changed, but NOT A[1]
and i;

! after the call? NONE of A[1], A[2], nor i
are changed.

! upon return:

A[1] = 1, i = 1, A[2] = 1

18 - Jensen's device
! Jensen's device makes explicit use of pass-

by-name's distinctive behavior;

! if you want a function Sum such that
x = summation of V[i] from i=1 to n

" that's easy with pass-by-name parameters!

real procedure Sum (k, st, u,
 ak);

 value st, u;
 integer k, st, u;
 real ak;
 begin
 real S;
 S := 0;
 for k := 1 step st

 until u do
 S := S + ak;
 Sum := S;
 end;

19 - Jensen's device, continued
! notice -- there's NO array in Sum!

! BUT -- consider the call:

x := Sum(i, 1, n, V[i])

 k st u ak

! substituting the variables in the body:

 S := 0;
 for i := 1 step 1 until n do

 S := S + V[i];
 Sum := S;

! see how V[1] through V[n] WILL indeed
be changed here?

! ...but DIDN'T pass the entire array!

20 - Jensen's device, continued
Want the summation of i from 1 to m

and j from 1 to n
of A[i, j]?

x := Sum (i, 1, m, Sum (j, 1, n, A[i, j]))
...which becomes:

 S := 0;
 for i := 1 step 1 until m do
 S := S + Sum(j, 1, n, A[i, j]);
 Sum := S;

...and:
 S := 0;
 for i := 1 step 1 until m do
 S := S + > S := 0
 for j := 1 step 1 to n do
 S := S + A[i, j];
 Sum := S;
! ...very flexible!

21 - to read more about how pass-by-
name is implemented...

! ...see MacLennan p. 132;

" ...NOT as awful as it sounds, but not that cheap; either;

" using thunks: pieces of code that provide an address;

22 - pass-by-name trap!
! ...for example, consider this Swap routine:

procedure Swap(x, y);
 integer x, y;
 begin
 integer t;
 t := x;
 x := y;
 y := t;
 end;

! usually, all is well; BUT what if:

Swap (i, A[i])?

" (for ex, where i is 1 and A[1] = 27)

t := i; -- t set to 1
i := A[i]; -- i set to 27
A[i] := i; -- A[27] set to 1!

! ... doesn't swap! doesn't exchange!

23 - pass-by-name trap, cont'd
! [MacLennan]:

! "computer scientists have shown that there is
NO WAY to define a Swap procedure in
Algol-60 that works for all parameters"!

! "traps such as these have led language
designers to avoid pass-by-name in almost all
languages designed after Algol-60"...!

24 - Ada's approach (p. 1)
! [source: pp. 286-288, MacLennan, Ch. 8]

! Ada's approach - if the idea is to permit
input, output, and input/output parameters,
why not just have the programmer give the
intent of the parameter when declaring it?

! ...so, in Ada, parameters can be declared as
in (input), out (output), or in out
(input/output)

! then, the compiler determines how to
accomplish the actual parameter passing;
(and a program in which the particular
parameter-passing mode used affects the
output is considered to not be "legal" Ada...!)

! in parameters may not be assigned to;

! in Ada 83, out parameters were considered
write-only; in Ada 95, they can be read (but
presumably after they've been written to...!)

25 - Ada's approach (p. 2)
! in parameters that are elementary types and

pointers use pass-by-value;

" for composite types and certain other
types, either pass-by-value or pass-by-
reference is used, compiler's choice;

! out parameters use either pass-by-reference
or are copied out (the result half of pass-by-
value-result!), compiler's choice;

! in out parameters that are elementary
types essentially use pass-by value-result;

" for most composite types, either pass-by-
reference or pass-by-value-result are used,
compiler's choice

! see pp. 287-288 for a discussion on how the
compiler can decide whether to pass a
parameter by reference or by value;

26 - Parameter Passing Modes
of Some Major Languages (p.1)
! sources:

" http://74.125.155.132/search?
q=cache:9JCmmH4ukVcJ:www.csie.ntu.e
du.tw/~pangfeng/PL
%2520notes/chap9.doc+ANS+Fortran+sta
ndard+pass+by+value+result&cd=5&hl=e
n&ct=clnk&gl=us

" http://www.angelfire.com/trek/katorejas/

! Fortran: Pass-by-reference before F77, pass-
by-value-result afterwards.

" [katorejas:] "the language does not specify
whether pass-by-reference or pass-by-
value-result should be used."

! ALGOL 60: Pass-by-name and pass-by-
value.

27 - Parameter Passing Modes
of Some Major Languages (p.2)
! C: Pass-by-value, pass-by-reference is

emulated by passing pointers.

! C++: Pass-by-value plus pass-by-reference
with reference data type.

! Java: only has pass-by-value! (When an
object is passed as a parameter, a reference to
that object is copied -- that is not the same as
pass-by-reference, since what is referenced
can be changed, but not the reference itself...)

" passing a Java reference by value, then, is
like passing a C++ pointer by value -- it is
not the same as passing a pointer by
reference...

! ALGOL-W: First use of pass-by-value-
result.

! Pascal: Pass-by-value and pass-by-reference.

28 - Parameter Passing Modes
of Some Major Languages (p.3)
! Ada: Pass-by-value, Pass-by-reference, Pass-

by-value-result, Pass-by-result (out
parameters)

! Scheme: Pass-by-value

! SIMULA-67: Pass-by-name

" [katorejas:] "Primarily because of the
difficulty in implementing them, pass-by-
name parameters were not carried from
ALGOL 60 to any subsequent languages
that became popular, other than SIMULA-
67."

