
Scott's Eight Principal 
Categories for Control Flow 

Mechanisms - 1
(from Scott, "Programming Language 
Pragmatics", 3rd Edition, Chapter 6, pp. 
219-220)
1. Sequencing
2. Selection
3. Iteration
4. Procedural abstraction
5. Recursion
6. Concurrency
7. Exception handling and speculation
8. Nondeterminacy



Food for Thought: - 2
(from Scott, "Programming Language 
Pragmatics", 3rd Edition, Chapter 6, p. 220)

"Though the syntactic and semantic details 
vary from language to language, these eight 
principal categories cover all of the control-
flow constructs and mechanisms found in 
most programming languages.

A programming who thinks in terms of 
these categories, rather than the syntax of 
some particular language, will find it easy 
to:

!learn new languages, 

!evaluate the tradeoffs among languages, 
and 

!design and reason about algorithms in a 
language-independent way."



Control flow in Assembly - 3

!often includes a JUMP command of some 
sort

!often includes one or more compare-then-
jump commands

!from these, you can build many logical 
control structures (some of which will even 
be correct for what you want to do)



Control flow in early FORTRAN - 4

!biggest goal: designing a compiler that 
could produce efficient programs

!its control structures largely mirror those 
of the hardware they were already used to 
using: the IBM 704

!based on the IBM 704 branch instructions

!(such machine dependence is a 
characteristic of first-generation 
languages)



Early FORTRAN IF-statements - 5

arithmetic IF statement
IF (e) n1, n2, n3

the semantics/meaning of this statement:

!evaluate the expression e;

!if it is negative, branch to n1,

!if it is zero, branch to n2,

!if it is positive, branch to n3

"exactly the function of the 704's CAS 
instruction, which compares the 
accumulator with a value in storage and 
then branches to one of three locations" 
[MacLennan, Chapter 2]



2-way branch in early FORTRAN - 6 

IF (condition) GOTO 100
... false case ...

GOTO 200

100 ... true case ...

200 ... 

IF (.NOT. (condition)) GOTO 
100

... true case ...

GOTO 200

100 ... false case ...

200 ...



Early FORTRAN's computed 
GOTO - 7

GOTO (10, 20, 30, 40), I
10 ... handle case 1 ...

GOTO 100

20 ... handle case 2 ...

GOTO 100

30 ... handle case 3 ...

GOTO 100

40 ... handle case 4 ...

GOTO 100

100 ...



More Early FORTRAN - 8

leading decision loop:
100 IF (loop done) GOTO 200

... body of loop ...

GOTO 100

200 ...

trailing decision loop:
100 ... body of loop ...

IF (loop not done) GOTO 100

definite iteration loop:
DO 100 I = 1, N

A(I) = A(I) * 2

100 CONTINUE



the dangling else problem - 9
if B then if C then S else T

!when is T done?

!Algol-60's solution - don't ALLOW an IF 
statement as the only statement in an IF-
part!

!Pascal's/C++'s solution - pair any else with 
the nearest unmatched IF

!Ada's solution - have EXPLICIT ends for 
its IF statement (end if)


