
1 - Programming Language
Generations

! There are numerous "takes" in this!

! Here, we are using MacLennan's take, from
the course text;

2 - Characteristics of First-
Generation Programming

Languages (page 1)
[source: MacLennan, p. 92]

" the classic example: FORTRAN

" "In general, ... the structures of first
generation languages are based on the
structures of the computers in the early
1960's"

! "...natural, since the only experience
people had in programming was in
programming these machines"...!

3 - First-Generation (page 2)
" "This machine orientation is especially

apparent in first generation control
structures"

! non-nested

! "depend heavily on the GOTO for building
any but the simplest control structures"

! "One exception ... the definite iteration
statement [FORTRAN's DO-loop] ...
which IS hierarchical in first-generation
languages."

" "Recursive procedures are not permitted in
most first-generation languages (BASIC is an
exception)"

" "there is generally only one parameter
passing mode (typically, pass by reference)"

4 - First-Generation (page 3)
" "machine orientation ... can also be seen in

the types of data structures provided ...
patterned after the layout of memory on the
computers available around 1960."

! "data structure primitives ... are fixed and
floating point numbers of various
precisions, characters, and logical values --

! ...just the kinds of values manipulated by
the instructions on these computers"

" "The data structure constructors are arrays
and, in business-oriented languages, records,
which are the ways storage was commonly
organized."

" "As with control structures, first-generation
languages provide little facility for
hierarchical data organization (an exception
is COBOL's record structure). That is, data
structures cannot be nested."

5 - First-Generation (page 4)
" "characterized by a relatively weak type

system;

! that is, it is easy to subvert the type
system or do representation-dependent
programming."

! "(Machine independence and portability
were not major concerns in the first
generation.)

" "Hierarchical structure is also absent from
first-generation name structures, with disjoint
scopes being the rule."

! "variable names are bound directly and
statically to memory locations since there
is no dynamic memory management."

6 - First-Generation (page 5)
" "syntactic structures ... are characterized by a

card-oriented, linear arrangement of
statements patterned after assembly
language"

! "...most of these languages had numeric
statement labels that are suggestive of
machine addresses"

" BUT they "go significantly beyond assembly
languages ... in their provision of algebraic
notation"

" "Their usual lexical conventions are to ignore
blanks and to recognize keywords in
context."

7 - First-Generation (page 6)
" "In summary, the salient characteristics of the

first generation are:

! machine orientation and

! linear structures."

" ... "second generation makes important
moves in the directions of

! application orientation and

! hierarchical structure."

8 - Characteristics of Second-
Generation Programming

Languages (page 1)
[source: MacLennan, pp. 163-164]

" the first, and classic, example: Algol-60

" "second-generation structures are
elaborations and generalizations of the
corresponding first-generation structures"

" data structures:

! still "very close to first-generation
structures",

! with only simple generalizations (different
lower bounds, dynamic arrays)

" still linear; closely patterned on machine-
addressing modes

9 - Second-Generation (page 2)
" "usually have strong-typing of the built-in

types"

" name structures: one of the 2nd generation's
biggest contributions is here: hierarchical
nesting!

! better control of name space

! permits efficient dynamic memory
allocation

" "The introduction of block structure is
perhaps the most characteristic attribute of
this language generation."

10 - Second-Generation (p. 3)
" structured control structures - "which, by

hierarchically structuring the control flow,
eliminate the need for confusing networks of
goto's"

" "also elaborated many of the first
generation's control structures" --

" sometimes with good results:

! recursive procedures,

! the idea of a choice of parameter-passing
modes

" sometimes, not (or at least with more
questionable results)!

! the proliferation of baroque and
expensive constructs

11 - Second-Generation (p. 4)
" syntactic structures:

! "saw a shift away from fixed formats,

! toward free-format languages with
machine-independent lexical
conventions"

" "a number of languages shifted to keyword
or reserved word policies, although the
keyword-in-context rule was also used
(PL/I)"

12 - Second-Generation (p. 5)
" "In general, the second generation can be

seen as the full flowering of the technology
of language design and implementation.

" The many new techniques developed in this
period encouraged unbridled generalization -
with both desirable and undesirable
consequences."

" "We will see that the third generation tried to
compensate for the excesses while retaining
the accomplishments."

13 - Characteristics of Third-
Generation Programming

Languages (page 1)
[source: MacLennan, pp. 208-209]

" the classic example: Pascal

" show an emphasis on simplicity and
efficiency

! generally a reaction against the excesses of
the second generation

" syntactic structures: essentially those of the
second generation

14 - Third-Generation (page 2)
" data structures: shift of emphasis from the

machine to the application

! provision of user-defined data types --
now users can create the data types needed
by their applications;

! also exemplified by application-oriented
type constructors, like sets, subranges, and
enumeration types

" also characterized by the ability to nest data
structures to any depth! (to organize data
hierarchically)

" name structures: generally some
simplification of Algol-60 block structure

! BUT, also "typically have new binding
and scope-defining constructs, often
associated with data type constructors,
such as records and enumeration types"

15 - Third-Generation (page 3)
" control structures: simplified, efficient

versions of those found in the second
generation;

! especially apparent in Pascal's for-loop

! Pascal also provided two separate
constructs for indefinite iteration: while-
loop, repeat-loop

! rejection of name parameters and similar
delayed-evaluation mechanisms

" also often include application-oriented
control structures, such as Pascal's case-
statement

16 - Third-Generation (page 4)
" in summary: combines practical engineering

principles with the technical achievements of
the 2nd generation --

! the result, especially in the case of Pascal,
is a simple, efficient, secure tool for many
applications

17 - Characteristics of Fourth-
Generation Programming

Languages (page 1)
[source: MacLennan, pp. 305-306]

" the classic example: Ada

" rather more non-standard than his first 3; but
then, as he notes that he means fourth
generation programming languages;

! "fourth-generation language" is sometimes
used "to refer to application generator
programs, which might or might not be
programming languages in the technical
sense discussed in the first two pages of
the Introduction."

" Sometimes I've seen 4GL's characterized as
languages where you indicate what you
want, and not how to get it -- that's another
different "direction";

18 - Fourth-Generation (page 2)
" some characteristics are just a consolidation

and correction of certain third generation
characteristics;

" others are important new facilities;

" most important contribution: in name
structures

! MacLennan's fourth generation is
essentially synonymous with data
abstraction language!

" primary characteristic: provision of an
encapsulation facility supporting:

! the separation of specification and
definition

! information hiding

! name access by mutual consent

19 - Fourth-Generation (page 3)
" "Most of these languages allow encapsulated

modules to be generic (or polymorphic)",
which can lead to operator identification
issues;"

" control structures: "It is characteristic of this
generation to provide for concurrent
programming"

! "Most ... use some form of message-
passing as a means of synchronization and
communication among concurrent tasks"

! "Protected data structures ... are also
typical."

! "On the other hand, the basic framework
of these languages is still sequential."

" "typically also have a dynamically-scoped
exception mechanism for handling both
system- and user-defined errors"

20 - Fourth-Generation (page 4)
" data structure constructors: similar to

those of the third generation, except some
problems (array parameters!) have been
corrected;

" "primitive data structures tend to be more
complicated than the third generation,
because of the desire to control accuracy and
precision in numeric types"

" "syntactic structures ... are largely those of
the second and third [generations]... in the
Algol/Pascal tradition.

! The major exception is a preference for
fully-bracketed structures."

! ^ ...which, for example, are another
solution to the dangling-else problem!

21 - Another language family...
(page 1)

[source: MacLennan, p. 207-208]

" "In the early 1960's teams at Cambridge and
London Universities developed a
semantically sophisticated but very complex
language called CPL"

! "explained as "Cambridge Plus London"
or "Combined Programming Language"

! "The latter acronym hints at its
complexity,

! ...for CPL exhibits the full baroque
flowering of the second generation"
[Algol-60's generation, remember!]

22 - Another family... (page 2)
" "Like Algol-60, CPL posed implementation

challenges for its designers,

" ...so they wanted to implement it in the "best"
programming language: CPL."

! not as weird as it sounds -- "Pascal was
implemented in Pascal;

! it was expected of any decent general
purpose language that it would be the best
vehicle for implementing its own
compiler"...!

" BUT, in the case of CPL,

! "To simplify this process Martin Richards
designed (1967) a subset of CPL, called
BCPL for "Basic CPL", which included
only those features ESSENTIAL for
systems implementation."

23 - Another family... (page 3)
" an "alternative" meaning to BCPL:

! "Badly Constructed Programming
Language"

! (the joking-acronym heard by one CS
student at Rice in the late 1970's/early
1980's (OK, my husband) from another CS
student there...)

" Ultimately [ironically?], the CPL project died
away, but BCPL became a moderately
popular systems implementation language in
the early 1970's"

! (contemporary with early Pascal/early
Prolog?)

24 - Another family... (page 4)
" Why mention CPL and BCPL?

" ...because one of the places where BCPL was
popular was at Bell Labs "...when the earliest
versions of Unix (for an 8K PDP-7!) was
being developed"

! "Since the Unix project needed a systems
implementation language, in 1969-1970
Ken Thompson designed a language called
"B"

" In a 1993 SIGPLAN article, Dennis Ritchie
describes B as so:

! "it is BCPL squeezed into 8K bytes of
memory and filtered through Thompson's
brain"...!

" "At first there was little concern for
portability, and the language was very close
to the machine";

25 - Another family... (page 5)
" "In particular, like BCPL and many other

systems implementation languages, B was
typeless;

! that is, it had a single data type
corresponding to a word of PDP-7
memory"!!

! "This is, of course, the extreme of weak
typing, and is more typical of assembly
language than even of first-generation
languages, which typically have several
data types and some notion of type
checking."

" "Many other language design decisions were
dictated by the limited memory available to
compile B on the PDP-7."

26 - Another family... (page 6)
" So - a PDP-11 arrived in 1970 [at Bell Labs],

and "With [its] arrival ... the Unix team
became aware of problems with B's
addressing scheme,

! which was incompatible with memory
addressing on the PDP-11."

" "Therefore, in 1971 Dennis M. Ritchie began
extending B to include rudimentary data
types (for purposes of memory allocation and
addressing, NOT type checking),

! inspired in many respects by Algol-68." [!]

" "Eventually he called this language C, as the
successor of B;

! its evolution was mostly complete by
1973,

! when it was used to rewrite the kernel of
the Unix operating system."

27 - Another family... (page 7)
" Like most of the languages we've discussed,

C had some early modifications;

! "Some additional third-generation features,
such as union and enumeration types,
were added in the late 1970's,

! but attempts to port Unix to other
computers accented the portability and
security issues of weak typing."

" "Therefore a more restricted type system was
designed, but it was not enforced [!] by most
compilers;

! instead programmers had to rely on a
separate type-checker (called lint)."

28 - Another family... (page 8)
" In a way, the evolution of C recapitulates the

history of programming languages,

! with its shift from efficiency to
portability and security."

" "Ritchie acknowledges that [C] contains
many infelicities,

! some of which result from attempting to
maintain upward compatibility with B and
BCPL;

! others are "historical accidents or
mistakes". "

29 - Another family... (page 9)
" "The first published description (The C

Programming Language by Kernighan and
Ritchie) was published in 1978,

! but it was not a language definition per se,
since it was vague about many issues, and
it was not consistent with the "reference
compiler" (pcc, the portable C compiler)."

" "Many of these problems were solved by the
development of an ANSI standard C, which
began in 1983; it was approved in 1989."

" "During the late 1970's and early 1980's, use
of Unix spread outside of AT&T, mostly
within the university and industrial research
communities, and C spread with it."

30 - Another family... (page 10)
" "By the late 1980's it had become a popular

language for programming personal
computers (for which, again, efficiency was
often critical)."

" "It is ALSO used as an output language for
compilers of OTHER languages (much as a
structured assembler might be used),

! [does that make it something like a
BYTECODE for those languages?! 8-)]

" ...and [of course] has been the basis for other
languages, such as C++"

31 - Another family... (page 11)
" Why didn't we cover C as one of our

languages thus far?

! MacLennan also makes an interesting
argument that C mixes characteristics of
three language generations;

" "As a consequence of its history, C combines
characteristics of several generations."

" Third generation:

! "it [does have] some third-generation
features, such as hierarchical data
structures."

! (structs, which CAN be nested; not unlike
Pascal's records?)

32 - Another family... (page 12)
" Second generation:

! "Also, it borrows many ideas from second
generation languages, such as Algol-68,
CPL, and PL/I."

! e.g., "its low-level model of arrays and
pointers complicates or precludes
optimization on some computers [!]"

! "(in effect, C's storage model is lower level
than the machine's)"!

33 - Another family... (page 13)
" First generation:

! "In some ways it even returns to the first
generation"; e.g.,"it does not permit
nested procedures or environments."

! "Thus is has poor support for modular
programming (a key issue addressed by
fourth-generation languages")

! "It also resurrected some first generation
syntactic conventions, such as using = for
assignment and requiring declarations to
start with a keyword."

34 - Another family... (page 14)
" But - "Perhaps we should not be surprised at

the reappearance of first generation
characteristics in C;

" at least some were a direct consequence of
its orientation to a machine, the 8K PDP-7,
of comparable power to the machines for
which the first generation languages were
designed." ...!

! "Thus we may say that C was motivated
by concerns similar to those that
motivated first-generation language
designers"...!

35 - Another family... (page 15)
" "Ritchie remarks that "C is quirky, flawed,

and an enormous success." "

" "Aside from riding on the back of Unix
popularity,

" he suggests that the success of C can be
attributed to its

! simplicity, [!],

! efficiency,

! portability, [!]

! closeness to the machine, [aren't those
contradictory?]

! and its evolution in an environment in
which it was used to write practical
programs."

