
1 - MacLennan's Principles of
Programming Languages

! From the inside front cover of the course
text, MacLennan's "Principles of
Programming Languages", 3rd edition;

" ...and discussed, illustrated throughout the
text;

! some are contradictory, or are at cross-
purposes;

! but all are interesting to keep in mind in
designing (or evaluating) programming
languages

2 - Abstraction
! "Avoid requiring something to be stated more

than once; factor out the recurring pattern."

3 - Automation
! "Automate mechanical, tedious, or error-

prone activities."

4 - Defense in Depth
! "Have a series of defenses so that if an error

is not caught by one, it will probably be
caught by another."

5 - Elegance
! "Confine your attentions to designs that look

good because they are good."

6 - Impossible Error
! "Making errors impossible to commit is

preferable to detecting them after their
commission."

7 - Information Hiding
" "The language should permit modules

designed so that:

! 1. the user has all of the information
needed to use the module correctly, and
nothing more; and

! 2. the implementor has all of the
information needed to implement the
module correctly, and nothing more."

8 - Labeling
" "Avoid arbitrary sequences more than a few

items long.

! Do not require the user to know the
absolute position of an item in a list.

! Instead, associate a meaningful label with
each item and allow the items to occur in
any order."

9 - Localized Cost
! "Users should pay only for what they use;

avoid distributed costs."

10 - Manifest Interface
! "All interfaces should be apparent (manifest)

in the syntax."

11 - Orthogonality
! "Independent functions should be controlled

by independent mechanisms."

12 - Portability
! "Avoid features or facilities that are

dependent on a particular computer or a
small class of computers."

13 - Preservation of
Information

! "The language should allow the
representation of information that the user
might know and that the compiler might
need."

14 - Regularity
! "Regular rules, without exceptions, are easier

to learn, use, describe, and implement."

15 - Responsible Design
! "Do not ask users what they want; find out

what they need."

16 - Security
! "No program that violates the definition of

the language, or its own intended structure,
should escape detection."

17 - Simplicity
" "A language should be as simple as possible.

! There should be a minimum number of
concepts, with simple rules for their
combination."

18 - Structure
! "The static structure of a program should

correspond in a simple way to the dynamic
structure of the corresponding
computations."

19 - Syntactic Consistency
! "Similar things should look similar, different

things different."

20 - Zero-One-Infinity
! "The only reasonable numbers are zero, one,

and infinity."

