
CS 318 - Homework 6 p. 1

CS 318 - Homework 6

Deadline:
Due by 11:59 pm on Wednesday, March 27, 2013

How to submit:
Submit your files for this homework using ~st10/318submit on nrs-projects, with a homework 
number of 6

Purpose:
To practice with Java and JDBC.

Important notes:
• Your solutions for these problems should avoid using a hard-coded password within your Java source 

code. Feel free to copy and make use of the getPassword method from many of the posted in-class 
Java JDBC examples.

• You are expected to use standard Java naming conventions (as discussed in class) in your Java source 
code.

• In your Java source code, you are expected to indent the contents of all { }'s by at least 3 spaces, and 
each { and } should be on its own line, even with the preceding line (as seen in posted class examples).

– also, all Java classes and methods are expected to start with a comment that at least gives its name, 
and a purpose statement which explicitly describes either the purpose of the class or what the 
method expects and what it does and/or returns. 

• Remember to also follow the style guidelines and course standards given or discussed previously for the 
other languages used in this homework.

• Make sure that you have executed the scripts create-bks.sql and pop-bks.sql, and that the 
bookstore tables are successfully created and populated.

The Problems:

Problem 1
As a warm-up, write a little Java application that just provides a single piece of information with the help 
of JDBC.

Write a Java command-line application TotalOnHand.java using JDBC that queries the Oracle java 
account to find out the current total quantity-on-hand of all of the books, and prints that single total to the 
screen within a descriptive message. (Note that it does not expect any command-line arguments, and it 
may happily ignore any given.) 



CS 318 - Homework 6 p. 2

Your resulting TotalOnHand.java is now ready to submit.

Problem 2
Of course, queries that produce multiple-row results are more common. So, next you will use JDBC to 
obtain and display the results of such a query.

Write ShowTitleAuthor.java, a Java command-line application using JDBC that queries the Oracle 
java account, printing to the screen a descriptive heading, then for each book printing the following:

• its title

• then a space and a dash and a space

• then the name of its author 

• then a space and a dash and a space

• then the title's quantity-on-hand (one title - author - qty trio per line)

...in alphabetical order by title.

They do not have to be lined up nicely (we'll do that with <table>'s when we move on to servlets and 
JSP). (This also does not expect any command-line arguments and it may also happily ignore any given.) 

Your resulting ShowTitleAuthor.java is now ready to submit.

Problem 3
Consider GetPubBooks.java from Homework 5, Problem 3. Its Homework 5 version:

• expects 1 or more command-line arguments, names of publishers;

• if it doesn't get at least one command-line argument, it should complain in a descriptive message to the 
screen and exit;

• otherwise, for each command-line argument, it prints a message to the screen, on its own line, noting 
that you would eventually list this publisher's books here (including the name of the publisher in the 
message).

Now modify GetPubBooks.java so that for EACH command-line argument, assumed to be the name 
of a publisher, it:

• prints a blank line followed by a nice heading noting that these are books published by <that publisher's 
name>,

• and then lists the titles published by that publisher, one per line, in alphabetical order by title, as queried 
from the Oracle java account.

Note the following additional requirements:

• What should you do if this is called with the name of an publisher NOT in the database? Then you are 
permitted to just print the blank line and nice heading noting that these are books by <that publisher's 
name>, with nothing following it.

• Since there can be multiple command-line arguments, you might be doing multiple very similar queries. 
So, both for efficiency and to get practice for future SQL Injection avoidance, you are expected to use a 



CS 318 - Homework 6 p. 3

PreparedStatement rather than a Statement for this application.

Your resulting GetPubBooks.java is now ready to submit.

Problem 4
Recall the UpdateLog.java example; you are going to write a variation on this that also affects the 
same table log_table on the Oracle java account that UpdateLog updates.

As a reminder, here are log_table's columns (and note that its primary key is BOTH columns):
SQL> describe log_table

 Name                                      Null?    Type
 ----------------------------------------- -------- -------------
 USERNAME                                  NOT NULL VARCHAR2(20)
 TIME_LOGGED                               NOT NULL DATE

Write a Java command-line application AddToLog.java using JDBC that inserts a row into 
log_table for each of its command-line arguments, treating each command-line argument as a 
username of a new row in log_table, using the current date for time_logged.

For example, if on March 14 you ran:
java AddToLog abc1 def2 ghi3

... then the following rows would be added to log_table:
abc1                     14-Mar-13
def2                     14-Mar-13
ghi3                     14-Mar-13    

Note the following additional requirements:

• Since there can be multiple command-line arguments, you might be doing multiple very similar inserts. 
So, both for efficiency and to get practice for future SQL Injection avoidance, you are expected to use a 
PreparedStatement rather than a Statement for this application, also.

• Note that it should simply complain in a descriptive message to the screen and exit if called with NO 
command-line arguments (it should NOT try to connect to the database in that case).

Your resulting AddToLog.java is now ready to submit.

Problem 5
We are all sharing that java Oracle account - it could get pretty littered while everyone works on 
Problem 4!

Write a Java command-line application RemoveFromLog.java that seeks to remove all rows from 
log_table with a username equal to one of its command-line argument. That is,
java RemoveFromLog abc1 def2 ghi3

...would remove all the rows added by the example call in Problem 4 (as well as any other rows with the 
usernames abc1, def2, or ghi3). 



CS 318 - Homework 6 p. 4

Note the following additional requirements:

• The concept here is to do a separate delete for each username -- so, for the same reasons as for 
AddToLog, you are expected to use a PreparedStatement rather than a Statement for this 
application.

• It also should simply complain in a descriptive message to the screen and exit if called with NO 
command-line arguments (it should NOT try to connect to the database in that case).

(Be polite, please - while testing, try to only remove rows you have added... 8-) )

Your resulting RemoveFromLog.java is now ready to submit.

Problem 6
For some light meta-data playing, and as an excuse to have you peruse a bit of the Java 1.6 API, consider 
the posted example SpewTableColumns.java, which given a table name as a command-line 
argument, uses ResultSetMetaData to obtain and output the names of the columns in that table.

Look at the available methods for ResultSetMetaData under the Interfaces section of package 
java.sql at the Java 1.6 API (remember, there is link to it from the public course web site).

Consider the SQL*Plus describe command - it gives the names of the columns of the argument table 
name, along with whether they can be null (NOT NULL if they cannot be, blank if they can), and their 
type. But, since describe is a SQL*Plus command, you cannot call it using JDBC. But you can 
construct a Java version using JDBC's ResultSetMetaData...

You should find what you need amongst ResultSetMetaData's methods to create a Java command-
line application JDescribe.java, which expects to take a table name as its command-line argument, 
and prints to the screen, for each column in that table:

• the name of each column, 

• then a blank-dash-blank, 

• NOT NULL and a blank-dash-blank if it cannot be null, 

• and a string-depiction of that column's database-specific type name (with one column-name - if-not-null 
- type-name combo per line).

Note the following additional requirements:

• Have it complain to the screen and exit if anything other than exactly one command line argument is 
given.

• Have it complain differently to the screen and exit if there exists no table with that name.

It won't be as nicely formatted as the SQL*Plus describe command, but it will do for now.  (That is, 
you don't have to format it any further from the format described above unless you want to.)

Your resulting JDescribe.java is now ready to submit.

Problem 7
Consider SellBook.java from Homework 5, Problem 4. Right now, it:



CS 318 - Homework 6 p. 5

• expects exactly two command-line arguments, the ISBN to be sold and the quantity of that book to be 
sold.

• If it doesn't get exactly two command-line arguments, it should complain in a descriptive message to the 
screen and exit.

• if its second argument cannot be parsed as an integer, it should complain in a different descriptive 
message to the screen and exit. 

– Hint: what method will throw an exception -- that one could catch and handle in this way -- if given 
a string that cannot be parsed as an int?

• if that second argument/quantity is less than 0, it should complain in yet-another different descriptive 
message to the screen and exit.

• but if all is well, print a message to the screen noting that two appropriate command-line arguments 
were given, including those command-line arguments in your message. 

Now modify SellBook.java so that, if its two command-line arguments pass the requirements above, 
it should:

• call the PL/SQL stored function sell_book to try to update the Oracle java account's database 
appropriately to sell that many of that book. 

– (Note that a version of sell_book and its needed auxiliary subroutines have been created within 
the java Oracle account; do NOT remove or replace any of these subroutines from the java 
Oracle account!)

• use the value that sell_book returns to print a descriptive message to the screen, indicating if the sale 
seems to have succeeded, and if not, why not (be as specific as you can be about what the problem is in 
this descriptive message printed to the screen).

• NOTE: call pop_bks.sql as needed to "restore" the poor java' account's version of these tables as 
the class is working on this! And be aware that you are all testing using this one java account -- I hope 
it won't get too bizarre, but I cannot promise it won't.

Your resulting SellBook.java is now ready to submit.

Problem 7 - Aside/Food for thought
Something to think about (NOT to turn in with this homework, although it COULD be an exam or class 
exercise question at some point!):

• sell_book checks to make sure the number of books to be sold is >= 0. Why do you think I'm having 
you verify that this is the case within SellBook, and not call sell_book if so?

• you might have multiple different applications that happen to sell books as part of their purpose (a web 
site, an in-store check-out kiosk, even an in-store inventory replenishment system). What are some 
advantages of having all of the them call something such as PL/SQL stored function sell_book, 
instead of each implementing those business rules for selling a book themselves? What are some 
disadvantages of of having all of them call the PL/SQL stored function sell_book?


	Deadline:
	How to submit:
	Purpose:
	Important notes:
	The Problems:
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 7 - Aside/Food for thought



