
CS 444 - Individual Assignment 3 p. 1

CS 444 - Individual Assignment 3

Deadline
11:59 pm on Thursday, February 26, 2015

How to submit
Submit your files for this individual assignment using ~st10/444submit on nrs-labs, with a 
homework number of 3

Purpose
To practice programming as an individual with Java and with some of Project 2's leJOS concepts.

Important notes
• You should be able to do Problems 1 and 2 from the command line, or using the DrJava IDE, or from 

the command line on nrs-labs, or pretty much any Java IDE if you have another available.

• I do realize that you will not be able to test Problem 3's code before you submit it.

Problem 1 - 30 points
As a gentle warm-up, consider the posted version of the source code for the Java class GameDie. You 
are going to modify this class.

• Add an "@author adapted by <your name>" line to this class's javadoc comment.

• Add a selector/"getter" method getNumSides that expects nothing and returns the number of sides 
of the calling GameDie instance. 

– Don't forget to include an appropriate javadoc comment for this method!

• Add to class GameDie a private data field numRolls, whose value is intended to be the 
number of times the calling GameDie instance has been rolled, and a selector/"getter" method 
getNumRolls that expects nothing and returns the number of times the calling GameDie has been 
rolled.

– be careful -- remember that these changes will require that appropriate changes also be made to 
the constructors and to the roll() method.

Submit your version of GameDie.java.

Problem 2 - 30 points
Since we haven't formally covered JUnit unit testing in this class, you need some other way to exercise 
if not test your new version of GameDie. So, you will write a Java application using your modified 



CS 444 - Individual Assignment 3 p. 2

GameDie class.

Write a Java application class in TryMyDie.java that:

• creates two GameDie instances, one using the no-argument constructor and one using the 1-
argument constructor.

• prints to the screen the results of calling getNumSides for each of your GameDie instances in a 
descriptive message of your choice.

• rolls ONE of the GameDie instances to determine how many times to roll the OTHER GameDie 
instance -- and it rolls the OTHER GameDie instance precisely that many times, printing the result 
of EACH roll to the screen in a descriptive message of your choice.

• after that, prints to the screen the results of calling getNumRolls for each of your GameDie 
instances in a descriptive message of your choice.

As long as you do the above first, you may exercise your GameDie further if you would like.

Submit your version of TryMyDie.java.

Problem 3 - 40 points
This problem's purpose is to see if you are understanding the programs your team has been typing in 
and modifying for Project 2 -- it combines aspects of several of these.

Design and write a leJOS application class GuideMe.java that meets the following specifications, 
assuming you are using the end-of-Project-2 robot design with a touch sensor and an ultrasonic sensor.

The goal: By pushing the appropriate buttons on your robot, you can guide it from point A to point B 
without picking it up or changing its direction by hand, assuming that the path from point A to point B 
is not straight (but isn't overly narrow). For example, you could guide your robot around a chair or two 
in one of the aisles in BSS 313, or from BSS 313 to the Math/CS department office even if, say, several 
chairs or trash cans or other such obstacles were in that hallway.

MINIMUM SPECIFICATIONS: (up to 30 points)

• It starts by displaying Guide Me on the NXT screen.

• When you now press the NXT brick's Enter button, it clears the LCD screen and prints "Going 
Forward". And when you release the Enter button, it goes forward some constant distance.

When you now press the NXT brick's Left button, it clears the LCD screen and prints "Going 
Left". And when you release the Enter button, it rotates as needed to go to the left that same 
constant distance.

When you now press the NXT brick's Right button, it clears the LCD screen and prints "Going 
Right". And when you release the Enter button, it rotates as needed to go to the right that same 
constant distance.

When you press the NXT brick's Escape button, the program ends.

• You choose how long the constant distance is that is traveled during each button push, and declare 
that as a named constant private data field. 



CS 444 - Individual Assignment 3 p. 3

– You want this to be long enough that you make progress during each button push, but short 
enough that you can maneuver successfully just by pushing the buttons.

• You decide if you will use the default robot speed or if you will specify the robot speed in some 
fashion.

• You decide if you would like your robot to make any sounds during any of this.

NOTE: I have written, tested, and successfully run a version that does the above. I have NOT written a 
version with the following yet:

REMAINING 10 points: get one or both sensors involved!

• If your robot bumps into something, it could back up some constant amount (and then wait for the 
next button push).

• If your robot bumps into something, it could back up to where it started at the latest button push (and 
then wait for the next button push).

• If the ultrasonic sensor senses it is getting "too close" to something, it could stop (not go the entire 
usual distance) (and then wait for the next button push).

• If the ultrasonic sensor senses it is getting "too close" to something, it could back up (and then wait 
for the next button push).

• If the ultrasonic sensor senses it is getting "too close" to something, it could go left or right instead 
(and then wait for the next button push).

Obviously, you can't test your GuideMe.java yourself -- SO you will test this as an early stage in 
Project 3, in the newly-assigned Project 3 teams. I will of course understand that you haven't had a 
chance to test your GuideMe.java code before you submit it for this problem. But all of you on your 
team will be able to compare and contrast your solutions to this as you are all testing and debugging 
your versions as a team.

Submit your version of GuideMe.java.


	Deadline
	How to submit
	Purpose
	Important notes
	Problem 1 - 30 points
	Problem 2 - 30 points
	Problem 3 - 40 points

