
CS 328 - Basics of Oracle/PHP Bind Variables p. 1 of 2
last modified: 2024-03-30

Basics of Oracle/PHP Bind Variables
WHEN should you use bind variables?
You should use these whenever possible as an alternative to concatenation when building a dynamic SQL
statement, one that is built by the PHP (as opposed to being hard-coded), ESPECIALLY when it is being
built based on user-provided information.

(You will also use them in PL/SQL stored procedures and functions.)

Note that they may not be used to replace column or table names.

HOW do you write a bind variable in a PHP string
containing a SQL statement?

You may have multiple bind variables in a PHP string containing a SQL statement.

You get to choose their names, making sure those names begin with a colon (:).

For example, this query string contains two bind variables, :chosen_dept and :chosen_mgr :

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

Notice that no special quoting is necessary -- when the value is bound later, the system will quote the
bound value as needed!

WHEN and HOW do you bind a value to a bind variable?
You need to do this:

• AFTER you create a statement object for this query using oci_parse,
• and BEFORE you execute that statement object using oci_execute.

You do it using an oci_bind_by_name statement for each bind variable.

When a bind variable is used for input purposes -- as is the case for a SQL statement --
oci_bind_by_name expects THREE arguments:

• the statement object for the statement containing bind variables
• the bind variable to have a value bound to it, written in quotes
• an expression giving the desired value to bind to that bind variable in the next execution of that

CS 328 - Basics of Oracle/PHP Bind Variables p. 1 of 2
last modified: 2024-03-30

Basics of Oracle/PHP Bind Variables
WHEN should you use bind variables?
You should use these whenever possible as an alternative to concatenation when building a dynamic SQL
statement, one that is built by the PHP (as opposed to being hard-coded), ESPECIALLY when it is being
built based on user-provided information.

(You will also use them in PL/SQL stored procedures and functions.)

Note that they may not be used to replace column or table names.

HOW do you write a bind variable in a PHP string
containing a SQL statement?

You may have multiple bind variables in a PHP string containing a SQL statement.

You get to choose their names, making sure those names begin with a colon (:).

For example, this query string contains two bind variables, :chosen_dept and :chosen_mgr :

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

Notice that no special quoting is necessary -- when the value is bound later, the system will quote the
bound value as needed!

WHEN and HOW do you bind a value to a bind variable?
You need to do this:

• AFTER you create a statement object for this query using oci_parse,
• and BEFORE you execute that statement object using oci_execute.

You do it using an oci_bind_by_name statement for each bind variable.

When a bind variable is used for input purposes -- as is the case for a SQL statement --
oci_bind_by_name expects THREE arguments:

• the statement object for the statement containing bind variables
• the bind variable to have a value bound to it, written in quotes
• an expression giving the desired value to bind to that bind variable in the next execution of that

CS 328 - Basics of Oracle/PHP Bind Variables p. 2 of 2
last modified: 2024-03-30

statement object.

For example, if you have successfully connected to Oracle and that connection object is in a variable such
as, for example, $conn, and you also have:

$desired_dept = strip_tags($_POST["dept_wanted"]);
$desired_mgr = strip_tags($_POST["mgr_chosen"]);

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

$empl_query_stmt = oci_parse($conn, $empl_query_string);

...then you can bind values to that query's bind variables using:

oci_bind_by_name($empl_query_stmt, ":chosen_dept", $desired_dept);
oci_bind_by_name($empl_query_stmt, ":chosen_mgr", $desired_mgr);

And now you can execute the query using oci_execute:

oci_execute($empl_query_stmt, OCI_DEFAULT);

...and proceed as usual.

FUN FACT: if you'd like to run this query more than once
with different values...

...just call oci_bind_by_name with the next desired value for a bind variable, and then call
oci_execute again -- you can reuse the statement, and it turns out this kind of reuse is quite efficient!

One final comment on advantages of bind variables
From https://www.php.net/oci_bind_by_name:

* "Binding is important for Oracle database performance and also as a way to avoid SQL Injection
security issues.

* Binding allows the database to reuse the statement context and caches from previous executions
of the statement, even if another user or process originally executed it.

* Binding reduces SQL Injection concerns because the data associated with a bind variable is
never treated as part of the SQL statement. It does not need quoting or escaping.

* PHP variables that have been bound can be changed and the statement re-executed without
needing to re-parse the statement or re-bind."

CS 328 - Basics of Oracle/PHP Bind Variables p. 2 of 2
last modified: 2024-03-30

statement object.

For example, if you have successfully connected to Oracle and that connection object is in a variable such
as, for example, $conn, and you also have:

$desired_dept = strip_tags($_POST["dept_wanted"]);
$desired_mgr = strip_tags($_POST["mgr_chosen"]);

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

$empl_query_stmt = oci_parse($conn, $empl_query_string);

...then you can bind values to that query's bind variables using:

oci_bind_by_name($empl_query_stmt, ":chosen_dept", $desired_dept);
oci_bind_by_name($empl_query_stmt, ":chosen_mgr", $desired_mgr);

And now you can execute the query using oci_execute:

oci_execute($empl_query_stmt, OCI_DEFAULT);

...and proceed as usual.

FUN FACT: if you'd like to run this query more than once
with different values...

...just call oci_bind_by_name with the next desired value for a bind variable, and then call
oci_execute again -- you can reuse the statement, and it turns out this kind of reuse is quite efficient!

One final comment on advantages of bind variables
From https://www.php.net/oci_bind_by_name:

* "Binding is important for Oracle database performance and also as a way to avoid SQL Injection
security issues.

* Binding allows the database to reuse the statement context and caches from previous executions
of the statement, even if another user or process originally executed it.

* Binding reduces SQL Injection concerns because the data associated with a bind variable is
never treated as part of the SQL statement. It does not need quoting or escaping.

* PHP variables that have been bound can be changed and the statement re-executed without
needing to re-parse the statement or re-bind."

	WHEN should you use bind variables?
	HOW do you write a bind variable in a PHP string containing a SQL statement?
	WHEN and HOW do you bind a value to a bind variable?
	FUN FACT: if you'd like to run this query more than once with different values...
	One final comment on advantages of bind variables

