
CS 328 - Homework 4 p. 1 of 7

CS 328 - Homework 4

Deadline
11:59 pm on Sunday, February 18, 2024

Purpose
To get more practice with HTML form widgets, and to practice more with PL/SQL procedures, also
adding in parameters, basic if statements, and its version of a while loop.

How to submit
Each time you wish to submit, submit your files using ~st10/328submit on nrs-projects, with a
homework number of 4.

Important note: It is quite likely that your PL/SQL files will be in a different directory than your
HTML files. That's fine, and preferable!

• Just remember that you need to run ~st10/328submit from EACH directory with files to be
submitted for Homework 4.

Homework 4 Requirements/Set-up
• For this homework's problems, do not include any CSS except for:

– the external CSS normalize.css included in html-template.html

– (optionally) Week 3 Lab Exercise's minimal external CSS mostly for table formatting,
lab3-table.css

– To use this, place this element at the END of your head element, right before the head
element's closing tag, right AFTER the link element for normalize.css:
<link href="https://nrs-projects.humboldt.edu/~st10/styles/lab3-table.css"
 type="text/css" rel="stylesheet" />

• For an img element, note that it needs to validate as strict-style HTML. If its URL does not do so,
make a copy of the image in your nrs-projects account (if you can legally do so) or use a service such
as such as tinyurl to avoid problematic characters.

• Make a sub-directory in your public_html directory for Homework 4's HTML document. And, in
this case, you choose the name for this sub-directory.
cd ~/public_html # make sure you are in your public_html
mkdir name-you-choose # make a directory within public_html
chmod 711 name-you-choose # make it world-executable
cd name-you-choose # go to that new subdirectory

Remember that a world-readable file my-doc.html in the public_html subdirectory name-you-
choose would have the URL:

CS 328 - Homework 4 p. 1 of 7

CS 328 - Homework 4

Deadline
11:59 pm on Sunday, February 18, 2024

Purpose
To get more practice with HTML form widgets, and to practice more with PL/SQL procedures, also
adding in parameters, basic if statements, and its version of a while loop.

How to submit
Each time you wish to submit, submit your files using ~st10/328submit on nrs-projects, with a
homework number of 4.

Important note: It is quite likely that your PL/SQL files will be in a different directory than your
HTML files. That's fine, and preferable!

• Just remember that you need to run ~st10/328submit from EACH directory with files to be
submitted for Homework 4.

Homework 4 Requirements/Set-up
• For this homework's problems, do not include any CSS except for:

– the external CSS normalize.css included in html-template.html

– (optionally) Week 3 Lab Exercise's minimal external CSS mostly for table formatting,
lab3-table.css

– To use this, place this element at the END of your head element, right before the head
element's closing tag, right AFTER the link element for normalize.css:
<link href="https://nrs-projects.humboldt.edu/~st10/styles/lab3-table.css"
 type="text/css" rel="stylesheet" />

• For an img element, note that it needs to validate as strict-style HTML. If its URL does not do so,
make a copy of the image in your nrs-projects account (if you can legally do so) or use a service such
as such as tinyurl to avoid problematic characters.

• Make a sub-directory in your public_html directory for Homework 4's HTML document. And, in
this case, you choose the name for this sub-directory.
cd ~/public_html # make sure you are in your public_html
mkdir name-you-choose # make a directory within public_html
chmod 711 name-you-choose # make it world-executable
cd name-you-choose # go to that new subdirectory

Remember that a world-readable file my-doc.html in the public_html subdirectory name-you-
choose would have the URL:

CS 328 - Homework 4 p. 2 of 7

https://nrs-projects.humboldt.edu/~your_user_name/name-you-choose/my-doc.html

– (Note: it is also perfectly fine if you choose to put your Homework 4 files in a "deeper" sub-
directory within public_html.)

• You get to choose where your PL/SQL files go on nrs-projects -- but make sure these files are not
readable by anyone but you. (That is, give your 328hw4.sql file permissions of 600
(rw-------):
chmod 600 328hw4.sql

Problem 1
The purpose of this problem is to give you yet another chance to practice with form widget elements.
Starting from the html-template.html posted on the course public site and along with this
homework handout, create a strict-style HTML document that meets the class style standards as well as
the following requirements:

• Include prob1 somewhere in its file name, and give its file name the suffix .html .

• Fill in the opening comment block as specified, putting in your name, the last modified date, and the
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• You get to choose the theme(s)/topic(s) for your form, but your form's content may not be identical
to that from in-class examples or your Week 4 Lab Exercise. (The idea here is to get additional
practice.)

• Give the title element appropriate descriptive content.

• Include an appropriate h1 element.

• Include a form element that meets the CS 328 class style standards, that also meets the following
requirements:

– It should have an action attribute whose value is a "real" URL of your choice (because we
haven't gotten to writing an actual application program to handle this form yet).

– It should have a method attribute whose value is "get".

– It should contain a top-level fieldset element that contains an appropriate legend element
of your choice -- and within this top-level fieldset should be the following (not necessarily in
this order):

– (you may include additional nested fieldset elements around parts of the content below as
you would like)

– an input element of type="number" that is required to be completed (using attribute
required="required"), with a logically-related label element

– at least 3 checkboxes, each with a logically-related label element

– at least 3 logically-grouped radio buttons, exactly one of which is initially selected, each

CS 328 - Homework 4 p. 2 of 7

https://nrs-projects.humboldt.edu/~your_user_name/name-you-choose/my-doc.html

– (Note: it is also perfectly fine if you choose to put your Homework 4 files in a "deeper" sub-
directory within public_html.)

• You get to choose where your PL/SQL files go on nrs-projects -- but make sure these files are not
readable by anyone but you. (That is, give your 328hw4.sql file permissions of 600
(rw-------):
chmod 600 328hw4.sql

Problem 1
The purpose of this problem is to give you yet another chance to practice with form widget elements.
Starting from the html-template.html posted on the course public site and along with this
homework handout, create a strict-style HTML document that meets the class style standards as well as
the following requirements:

• Include prob1 somewhere in its file name, and give its file name the suffix .html .

• Fill in the opening comment block as specified, putting in your name, the last modified date, and the
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• You get to choose the theme(s)/topic(s) for your form, but your form's content may not be identical
to that from in-class examples or your Week 4 Lab Exercise. (The idea here is to get additional
practice.)

• Give the title element appropriate descriptive content.

• Include an appropriate h1 element.

• Include a form element that meets the CS 328 class style standards, that also meets the following
requirements:

– It should have an action attribute whose value is a "real" URL of your choice (because we
haven't gotten to writing an actual application program to handle this form yet).

– It should have a method attribute whose value is "get".

– It should contain a top-level fieldset element that contains an appropriate legend element
of your choice -- and within this top-level fieldset should be the following (not necessarily in
this order):

– (you may include additional nested fieldset elements around parts of the content below as
you would like)

– an input element of type="number" that is required to be completed (using attribute
required="required"), with a logically-related label element

– at least 3 checkboxes, each with a logically-related label element

– at least 3 logically-grouped radio buttons, exactly one of which is initially selected, each

CS 328 - Homework 4 p. 3 of 7

with a logically-related label element

– at least one select element containing at least five options, set up so the user can only
select one item at a time, with a logically-related label element

– at least one textarea element, with a logically-related label element

– at least one other form widget discussed in zyBooks Chapter 2 but not yet required in a
homework or lab exercise, with a logically-related label element

– (you may add additional form widgets if you would like)

– the last form widget in your form's fieldset should be an input element with
type="submit" (which does not need a logically-related label element).

• Include your last name within a p element that you add to the footer element.

Reminder: for this homework, you may not use any CSS to style this form, and we'll never use the
table element to format a form element, either. However, it appears that you can use fieldset
elements, p elements, and instances of the void element br and still have it successfully validate as
strict-style HTML.
Try filling out and submitted your form, guessing what name=value pairs should appear at the end of
your action attribute's URL when you submit it, and see if they do.

Make sure an .xhtml copy of your document validates as strict-style HTML, and submit your
resulting .html document. (Highly recommended: validate your form-in-progress frequently as you
are creating it, and do not wait until you have completed attempts at all of its parts. Likewise, submit
partial in-progress versions of your .html file through the week.)

Set-up for PL/SQL Problems 2-4
Create a file 328hw4.sql. Give this file permissions of 600 (rw-------) by typing this at the nrs-
projects prompt:
chmod 600 328hw4.sql

Start this file with the following:

• comments containing at least your name, CS 328 - Homework 4 - Problems 2-4, and the
last-modified date.

• include the command to set serveroutput on

• followed by a SQL*Plus spool command to spool the results of running this SQL script to a file
named 328hw4-out.txt

• followed by a prompt command including your name

Be sure to spool off at the end of this script (after your statements for the remaining problems).

ASIDE: Basic PL/SQL Parameters
The most basic PL/SQL parameters are declared similarly to those in C++/C/Java, except:

CS 328 - Homework 4 p. 3 of 7

with a logically-related label element

– at least one select element containing at least five options, set up so the user can only
select one item at a time, with a logically-related label element

– at least one textarea element, with a logically-related label element

– at least one other form widget discussed in zyBooks Chapter 2 but not yet required in a
homework or lab exercise, with a logically-related label element

– (you may add additional form widgets if you would like)

– the last form widget in your form's fieldset should be an input element with
type="submit" (which does not need a logically-related label element).

• Include your last name within a p element that you add to the footer element.

Reminder: for this homework, you may not use any CSS to style this form, and we'll never use the
table element to format a form element, either. However, it appears that you can use fieldset
elements, p elements, and instances of the void element br and still have it successfully validate as
strict-style HTML.
Try filling out and submitted your form, guessing what name=value pairs should appear at the end of
your action attribute's URL when you submit it, and see if they do.

Make sure an .xhtml copy of your document validates as strict-style HTML, and submit your
resulting .html document. (Highly recommended: validate your form-in-progress frequently as you
are creating it, and do not wait until you have completed attempts at all of its parts. Likewise, submit
partial in-progress versions of your .html file through the week.)

Set-up for PL/SQL Problems 2-4
Create a file 328hw4.sql. Give this file permissions of 600 (rw-------) by typing this at the nrs-
projects prompt:
chmod 600 328hw4.sql

Start this file with the following:

• comments containing at least your name, CS 328 - Homework 4 - Problems 2-4, and the
last-modified date.

• include the command to set serveroutput on

• followed by a SQL*Plus spool command to spool the results of running this SQL script to a file
named 328hw4-out.txt

• followed by a prompt command including your name

Be sure to spool off at the end of this script (after your statements for the remaining problems).

ASIDE: Basic PL/SQL Parameters
The most basic PL/SQL parameters are declared similarly to those in C++/C/Java, except:

CS 328 - Homework 4 p. 4 of 7

• As for PL/SQL local variable declarations, you write the parameter name and THEN the parameter
type.

• The parameter type must be unconstrained -- this means that, if the PL/SQL type can be followed
by a set of parentheses with info within constraining the type, you may NOT put those parentheses.

For example, if you wanted a PL/SQL stored procedure that expected an item's name and quantity,
returns nothing, and queries its price and prints to the screen the cost for that many of that item, that
procedure heading could be written like this:
create or replace procedure print_cost(item_name varchar2,
 quantity integer) as

(Note, then, that while a local variable of type char or varchar2 typically NEEDS to have a size
specified, a parameter variable of those types must NOT have a size specified! And the same will be
the case with the number and decimal types as well.)

Problem 2
As a warm-up to try out a PL/SQL parameter, in your PL/SQL script 328hw4.sql, write a PL/SQL
stored procedure num_pub_titles that:

• expects the name of a publisher,

• prints to the screen a tasteful message including both the name of the publisher and the number of
titles the bookstore carries from that publisher

• returns nothing (since it is a procedure!)

(Note: by "number of titles", I mean the number of different titles, not how many copies of those titles.
That is, if the bookstore carried just the titles "How to Moo" and "How to Baa" published by Tuttle
Press, then the bookstore carries 2 titles from Tuttle Press, no matter how many copies of each it
currently has in stock.)
Here are additional requirements for this problem:

• Look in the posted SQL script hello.sql at the version of the stored procedure hello_world
that we created during class on Wednesday -- after class, I added an opening comment block for that
procedure.

– Create an opening comment block for your procedure that has a procedure: part and
purpose: part in the same style that you see here. (You don't have to give an examples:
part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure num_pub_titles.

• Follow that with at least TWO tests of num_pub_titles, EACH including:

CS 328 - Homework 4 p. 4 of 7

• As for PL/SQL local variable declarations, you write the parameter name and THEN the parameter
type.

• The parameter type must be unconstrained -- this means that, if the PL/SQL type can be followed
by a set of parentheses with info within constraining the type, you may NOT put those parentheses.

For example, if you wanted a PL/SQL stored procedure that expected an item's name and quantity,
returns nothing, and queries its price and prints to the screen the cost for that many of that item, that
procedure heading could be written like this:
create or replace procedure print_cost(item_name varchar2,
 quantity integer) as

(Note, then, that while a local variable of type char or varchar2 typically NEEDS to have a size
specified, a parameter variable of those types must NOT have a size specified! And the same will be
the case with the number and decimal types as well.)

Problem 2
As a warm-up to try out a PL/SQL parameter, in your PL/SQL script 328hw4.sql, write a PL/SQL
stored procedure num_pub_titles that:

• expects the name of a publisher,

• prints to the screen a tasteful message including both the name of the publisher and the number of
titles the bookstore carries from that publisher

• returns nothing (since it is a procedure!)

(Note: by "number of titles", I mean the number of different titles, not how many copies of those titles.
That is, if the bookstore carried just the titles "How to Moo" and "How to Baa" published by Tuttle
Press, then the bookstore carries 2 titles from Tuttle Press, no matter how many copies of each it
currently has in stock.)
Here are additional requirements for this problem:

• Look in the posted SQL script hello.sql at the version of the stored procedure hello_world
that we created during class on Wednesday -- after class, I added an opening comment block for that
procedure.

– Create an opening comment block for your procedure that has a procedure: part and
purpose: part in the same style that you see here. (You don't have to give an examples:
part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure num_pub_titles.

• Follow that with at least TWO tests of num_pub_titles, EACH including:

CS 328 - Homework 4 p. 5 of 7

– prompt command(s) stating that you are about to test num_pub_titles and describe what
you should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling num_pub_titles.

ASIDE: Basic PL/SQL if statement
Here's PL/SQL's basic if statement:
IF bool_expr THEN
 statement;
 ...
 statement;
ELSE
 statement;
 ...
 statement;
END IF;

Note that:

• You must put a keyword then!

• You don't have to put parentheses around if's boolean expression (although you can if you wish!).

• It must end with an end if;

We'll talk in class about the oddness that is ELSIF -- but, you won't need that for this homework's
procedures.

Problem 3
Sad fact: SQL*Plus does not handle PL/SQL boolean values gracefully!

So, both to practice writing a PL/SQL if statement and to make a little procedure for use in
Homework 5, in your PL/SQL script 328hw4.sql, write a PL/SQL stored procedure print_test
that:

• expects a testing message and a boolean expression

• prints to the screen:

– the given testing message,

– followed by a colon and space,

– followed by TRUE if the given boolean expression's value is true,

or FALSE if the given boolean expression's value is false.

• returns nothing (since it is a procedure!)

So, for example:

CS 328 - Homework 4 p. 5 of 7

– prompt command(s) stating that you are about to test num_pub_titles and describe what
you should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling num_pub_titles.

ASIDE: Basic PL/SQL if statement
Here's PL/SQL's basic if statement:
IF bool_expr THEN
 statement;
 ...
 statement;
ELSE
 statement;
 ...
 statement;
END IF;

Note that:

• You must put a keyword then!

• You don't have to put parentheses around if's boolean expression (although you can if you wish!).

• It must end with an end if;

We'll talk in class about the oddness that is ELSIF -- but, you won't need that for this homework's
procedures.

Problem 3
Sad fact: SQL*Plus does not handle PL/SQL boolean values gracefully!

So, both to practice writing a PL/SQL if statement and to make a little procedure for use in
Homework 5, in your PL/SQL script 328hw4.sql, write a PL/SQL stored procedure print_test
that:

• expects a testing message and a boolean expression

• prints to the screen:

– the given testing message,

– followed by a colon and space,

– followed by TRUE if the given boolean expression's value is true,

or FALSE if the given boolean expression's value is false.

• returns nothing (since it is a procedure!)

So, for example:

CS 328 - Homework 4 p. 6 of 7

exec print_test('Should see TRUE', true)

...should cause this to be printed to the screen:
Should see TRUE: TRUE

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part. (You don't have to give an examples: part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then, put a comment saying you are about to test your procedure print_test.

• And, put in prompt command(s) saying that you are about to test print_test.

• But -- to then provide at least TWO tests of print_test, you should be able to just call it twice,
being sure to use first arguments that describe what should be seen if your procedure is working!

Problem 4
Consider Homework 3, Problem 5, parts b and c.
For more practice with PL/SQL parameters and an if statement, in your PL/SQL script
328hw4.sql, write a PL/SQL stored procedure title_info that:

• expects an ISBN,

• if a title with that ISBN exists in the title table, it prints to the screen a tasteful message including the
title name, its quantity on hand, its order point, and its auto order quantity,
otherwise it prints a tasteful message saying that the bookstore has no title with that ISBN

• returns nothing (since it is a procedure!)

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part. (You don't have to give an examples: part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure title_info.

• Follow that with at least TWO tests of title_info, (including at least one for an ISBN that does
exist in your title table, and at least one for an ISBN that does not), EACH including:

CS 328 - Homework 4 p. 6 of 7

exec print_test('Should see TRUE', true)

...should cause this to be printed to the screen:
Should see TRUE: TRUE

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part. (You don't have to give an examples: part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then, put a comment saying you are about to test your procedure print_test.

• And, put in prompt command(s) saying that you are about to test print_test.

• But -- to then provide at least TWO tests of print_test, you should be able to just call it twice,
being sure to use first arguments that describe what should be seen if your procedure is working!

Problem 4
Consider Homework 3, Problem 5, parts b and c.
For more practice with PL/SQL parameters and an if statement, in your PL/SQL script
328hw4.sql, write a PL/SQL stored procedure title_info that:

• expects an ISBN,

• if a title with that ISBN exists in the title table, it prints to the screen a tasteful message including the
title name, its quantity on hand, its order point, and its auto order quantity,
otherwise it prints a tasteful message saying that the bookstore has no title with that ISBN

• returns nothing (since it is a procedure!)

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part. (You don't have to give an examples: part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure title_info.

• Follow that with at least TWO tests of title_info, (including at least one for an ISBN that does
exist in your title table, and at least one for an ISBN that does not), EACH including:

CS 328 - Homework 4 p. 7 of 7

– prompt command(s) stating that you are about to test title_info and describe what you
should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling title_info.

Make sure you turned spooling off at the end of 328hw4.sql, and submit your 328hw4.sql and
328hw4-out.txt.

CS 328 - Homework 4 p. 7 of 7

– prompt command(s) stating that you are about to test title_info and describe what you
should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling title_info.

Make sure you turned spooling off at the end of 328hw4.sql, and submit your 328hw4.sql and
328hw4-out.txt.

	Deadline
	Purpose
	How to submit
	Homework 4 Requirements/Set-up
	Problem 1
	Set-up for PL/SQL Problems 2-4
	ASIDE: Basic PL/SQL Parameters
	Problem 2
	ASIDE: Basic PL/SQL if statement
	Problem 3
	Problem 4

