
CS 328 - Week 6 Lab Exercise p. 1 of 4

CS 328 - Week 6 Lab Exercise - 2024-02-23

Deadline
Due by the end of lab.

Purpose
To practice writing a PL/SQL trigger.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number

of 86.

Requirements
• You are required to work in pairs for this lab exercise.

– This means two people working at ONE computer, one typing ("driving"), one saying what to type
("navigating"),

while BOTH are looking at the shared computer screen and discussing issues along the way.

• Make sure BOTH of your names appear in each file submitted.

• When you are done, before you leave lab, somehow e-mail or copy the lab exercise files so that BOTH
of you have copies, and BOTH of you should submit these files using ~st10/328submit on
nrs-projects, with a lab number of 86.

• You are expected to follow the style standards from the posted "CS 328 SQL and PL/SQL Coding
Standards so far" (at
https://nrs-projects.humboldt.edu/~st10/s24cs328/328-sql-plsql-coding-standards.pdf).

Lab set-up
• On nrs-projects, if the driver has not previously executed set-up-ex-tbls.sql in their Oracle

account, they should do so, so that they have the tables empl, dept, and customer in their database.

– If needed, they can get a copy of this script using:
cp ~st10/set-up-ex-tbls.sql . # don't forget the blank and period!

• In a SQL script lab6.sql:

– In opening comment(s), FIRST put the script name, both of your names, and today's date/last
modified date.

– Put in the SQL*Plus command:
set serveroutput on

...JUST in case you decide to use dbms_output.put_line statements in debugging your trigger.

– Start spooling to a file lab6-out.txt:

CS 328 - Week 6 Lab Exercise p. 1 of 4

CS 328 - Week 6 Lab Exercise - 2024-02-23

Deadline
Due by the end of lab.

Purpose
To practice writing a PL/SQL trigger.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number

of 86.

Requirements
• You are required to work in pairs for this lab exercise.

– This means two people working at ONE computer, one typing ("driving"), one saying what to type
("navigating"),

while BOTH are looking at the shared computer screen and discussing issues along the way.

• Make sure BOTH of your names appear in each file submitted.

• When you are done, before you leave lab, somehow e-mail or copy the lab exercise files so that BOTH
of you have copies, and BOTH of you should submit these files using ~st10/328submit on
nrs-projects, with a lab number of 86.

• You are expected to follow the style standards from the posted "CS 328 SQL and PL/SQL Coding
Standards so far" (at
https://nrs-projects.humboldt.edu/~st10/s24cs328/328-sql-plsql-coding-standards.pdf).

Lab set-up
• On nrs-projects, if the driver has not previously executed set-up-ex-tbls.sql in their Oracle

account, they should do so, so that they have the tables empl, dept, and customer in their database.

– If needed, they can get a copy of this script using:
cp ~st10/set-up-ex-tbls.sql . # don't forget the blank and period!

• In a SQL script lab6.sql:

– In opening comment(s), FIRST put the script name, both of your names, and today's date/last
modified date.

– Put in the SQL*Plus command:
set serveroutput on

...JUST in case you decide to use dbms_output.put_line statements in debugging your trigger.

– Start spooling to a file lab6-out.txt:

CS 328 - Week 6 Lab Exercise p. 2 of 4

spool lab6-out.txt

...(and make sure you spool off at the script's end!)

– Put both of your names in a prompt command.

Problem 1 - create a new table dept_changes
An organization has decided it would like to keep track, over time, of its trends in changing department
names.

In your script lab6.sql, drop and create a table named dept_changes that has four attributes:

• dept_num, of type char(3)

• change_date, of type date

• prev_dept_name, of type varchar2(15)

• next_dept_name, of type varchar2(15)

Also:

• make the pair of attributes dept_num and change_date its primary key

• define dept_num as a foreign key referencing dept

(The first time you run this, the drop table command should give an error complaining that there is not
a table with this name to drop. As long as you do not get this error on subsequent runs of your script, that's
fine!)

Problem 2 - trigger log_name_changes
In your script lab6.sql, now write a PL/SQL trigger log_name_changes that meets the following
requirements:

• It should fire after each update to the dept table, for each row updated.

• If the firing update changed a department's name, it should insert a new row into the table
dept_changes containing:

– the updated department's department number,

– the current date (use sysdate for this),

– the previous name of the updated department, and

– the department name after the update.

– (If the update changed something else -- for example, the department location -- then this trigger
will not make any changes to the table dept_changes. That is, it will simply do nothing in that
case.)

• Look in the posted SQL script 328lect06-1.sql at the version of the trigger empl_trig that we
created during class on Monday.

– Create an opening comment block for your trigger that has a trigger: part and purpose: part in
the same style that you see here. (Note that this trigger's purpose is considerably simpler that
empl_trig's!)

CS 328 - Week 6 Lab Exercise p. 2 of 4

spool lab6-out.txt

...(and make sure you spool off at the script's end!)

– Put both of your names in a prompt command.

Problem 1 - create a new table dept_changes
An organization has decided it would like to keep track, over time, of its trends in changing department
names.

In your script lab6.sql, drop and create a table named dept_changes that has four attributes:

• dept_num, of type char(3)

• change_date, of type date

• prev_dept_name, of type varchar2(15)

• next_dept_name, of type varchar2(15)

Also:

• make the pair of attributes dept_num and change_date its primary key

• define dept_num as a foreign key referencing dept

(The first time you run this, the drop table command should give an error complaining that there is not
a table with this name to drop. As long as you do not get this error on subsequent runs of your script, that's
fine!)

Problem 2 - trigger log_name_changes
In your script lab6.sql, now write a PL/SQL trigger log_name_changes that meets the following
requirements:

• It should fire after each update to the dept table, for each row updated.

• If the firing update changed a department's name, it should insert a new row into the table
dept_changes containing:

– the updated department's department number,

– the current date (use sysdate for this),

– the previous name of the updated department, and

– the department name after the update.

– (If the update changed something else -- for example, the department location -- then this trigger
will not make any changes to the table dept_changes. That is, it will simply do nothing in that
case.)

• Look in the posted SQL script 328lect06-1.sql at the version of the trigger empl_trig that we
created during class on Monday.

– Create an opening comment block for your trigger that has a trigger: part and purpose: part in
the same style that you see here. (Note that this trigger's purpose is considerably simpler that
empl_trig's!)

CS 328 - Week 6 Lab Exercise p. 3 of 4

– Follow that with the PL/SQL code creating your trigger.

• Remember to follow your PL/SQL trigger with:
/

show errors

• Then put a comment saying you are about to test your trigger log_name_changes.

• Follow that with:

– A commit; statement to commit the pre-testing version of your database.

– A prompt command noting that these are the pre-test contents of dept and dept_changes,
followed by two select statements showing their contents.

– A prompt command noting which department is getting which new name, followed by an update
statement making that change.

– A prompt command noting which second/different department is getting which new name,
followed by an update statement making that change.

– A prompt command noting what third/different department is getting a new location, followed by
an update statement making that change.

– (You may add additional tests if you would like -- precede each with an appropriate descriptive
prompt command.)

– A prompt command noting that these are the post-test contents of dept and dept_changes,
describing what the changes should be, followed by two select statements showing their contents.

– Finish with a rollback; statement to UNDO these changes that were just made for testing
purposes.

• Make sure that your lab6.sql ends with:
spool off

If successful, your resulting lab6-out.txt should show that you created the desired new table, that your
trigger successfully compiled, and that its tests passed.

BEFORE you leave lab:
Make sure that you both have copies of the files:

• lab6.sql and lab6-out.txt

...and you BOTH submit these two files using ~st10/328submit on
nrs-projects, with a lab number of 86.

How the navigator can get files lab6.sql and lab6-out.txt:
These may be in a directory that is harder for the navigator to make a copy from than public_html.

For example -- they might be in a directory 328lab6 that is not a sub-directory of public_html.

Here is an approach for this:

CS 328 - Week 6 Lab Exercise p. 3 of 4

– Follow that with the PL/SQL code creating your trigger.

• Remember to follow your PL/SQL trigger with:
/

show errors

• Then put a comment saying you are about to test your trigger log_name_changes.

• Follow that with:

– A commit; statement to commit the pre-testing version of your database.

– A prompt command noting that these are the pre-test contents of dept and dept_changes,
followed by two select statements showing their contents.

– A prompt command noting which department is getting which new name, followed by an update
statement making that change.

– A prompt command noting which second/different department is getting which new name,
followed by an update statement making that change.

– A prompt command noting what third/different department is getting a new location, followed by
an update statement making that change.

– (You may add additional tests if you would like -- precede each with an appropriate descriptive
prompt command.)

– A prompt command noting that these are the post-test contents of dept and dept_changes,
describing what the changes should be, followed by two select statements showing their contents.

– Finish with a rollback; statement to UNDO these changes that were just made for testing
purposes.

• Make sure that your lab6.sql ends with:
spool off

If successful, your resulting lab6-out.txt should show that you created the desired new table, that your
trigger successfully compiled, and that its tests passed.

BEFORE you leave lab:
Make sure that you both have copies of the files:

• lab6.sql and lab6-out.txt

...and you BOTH submit these two files using ~st10/328submit on
nrs-projects, with a lab number of 86.

How the navigator can get files lab6.sql and lab6-out.txt:
These may be in a directory that is harder for the navigator to make a copy from than public_html.

For example -- they might be in a directory 328lab6 that is not a sub-directory of public_html.

Here is an approach for this:

CS 328 - Week 6 Lab Exercise p. 4 of 4

• The driver should temporarily make the directory with these files world-readable and -executable, and
these files world-readable -- assuming the driver is currently in their directory 328lab6:
chmod 755 . # notice the space and the period!

chmod 644 lab6.sql lab6-out.txt

• Now the navigator can copy these into a directory of their choice -- assuming the driver's username is
ab12 and the navigator is within the directory they want to copy into:
cp ~ab12/328lab6/* . # notice the space and the period!

• The driver and navigator should BOTH then protect these files:
chmod 600 lab6.sql lab6-out.txt

...and both can protect the directory containing them:
chmod 700 . # notice the space and the period!

...and both can now submit these using ~st10/328submit from the directory containing these files.

CS 328 - Week 6 Lab Exercise p. 4 of 4

• The driver should temporarily make the directory with these files world-readable and -executable, and
these files world-readable -- assuming the driver is currently in their directory 328lab6:
chmod 755 . # notice the space and the period!

chmod 644 lab6.sql lab6-out.txt

• Now the navigator can copy these into a directory of their choice -- assuming the driver's username is
ab12 and the navigator is within the directory they want to copy into:
cp ~ab12/328lab6/* . # notice the space and the period!

• The driver and navigator should BOTH then protect these files:
chmod 600 lab6.sql lab6-out.txt

...and both can protect the directory containing them:
chmod 700 . # notice the space and the period!

...and both can now submit these using ~st10/328submit from the directory containing these files.

	Deadline
	Purpose
	How to submit
	Requirements
	Lab set-up
	Problem 1 - create a new table dept_changes
	Problem 2 - trigger log_name_changes
	BEFORE you leave lab:
	How the navigator can get files lab6.sql and lab6-out.txt:

