
CS 328 - Week 14 Lab Exercise - 2024-04-26 p. 1 of 3

CS 328 - Week 14 Lab Exercise - 2024-04-26
Deadline
Due by 5:00 pm on Friday, April 26.

Purpose
To get more practice using unobtrusive-style client-side JavaScript, including using it to validate a form.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number of

94.

Requirements
• You may work individually OR using pair programming for this lab exercise, your choice!

– If you do use pair programming, make sure BOTH of your names appear in each file submitted!

• Whether working individually or using pair programming, make sure you have a copy of your lab exercise
files, and that you submit them using ~st10/328submit on nrs-projects, with a lab number of 94.

Part 1
• FIRST: copy the files from ~st10/for-328lab14-ex into your nrs-projects Week 14 Lab directory:

cp ~st10/for-328lab14-ex/* . // don't forget the space and period
– You should now have copies of the files:
lab14.php

make_lab14_form.php

make_lab14_response.php

lab14.css

– This is a small working two-state PHP postback application, currently with a button that does nothing and
no client-side JavaScript.

• Edit your copy of lab14.php so that its opening comment block includes YOUR name(s), and the URL
from which YOUR version of this application can be run.

– Then -- run it!

– Confirm that, between PHP and HTML, it has certain, ah, input requirements for its form.

– Confirm also that the "MUCK..." button currently does NOTHING.

You should now be ready to start adding some client-side JavaScript to this application.

Part 2
The goal here is to add a little unobtrusive-style client-side JavaScript so that the "MUCK..." button does
something.

CS 328 - Week 14 Lab Exercise - 2024-04-26 p. 1 of 3

CS 328 - Week 14 Lab Exercise - 2024-04-26
Deadline
Due by 5:00 pm on Friday, April 26.

Purpose
To get more practice using unobtrusive-style client-side JavaScript, including using it to validate a form.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number of

94.

Requirements
• You may work individually OR using pair programming for this lab exercise, your choice!

– If you do use pair programming, make sure BOTH of your names appear in each file submitted!

• Whether working individually or using pair programming, make sure you have a copy of your lab exercise
files, and that you submit them using ~st10/328submit on nrs-projects, with a lab number of 94.

Part 1
• FIRST: copy the files from ~st10/for-328lab14-ex into your nrs-projects Week 14 Lab directory:

cp ~st10/for-328lab14-ex/* . // don't forget the space and period
– You should now have copies of the files:
lab14.php

make_lab14_form.php

make_lab14_response.php

lab14.css

– This is a small working two-state PHP postback application, currently with a button that does nothing and
no client-side JavaScript.

• Edit your copy of lab14.php so that its opening comment block includes YOUR name(s), and the URL
from which YOUR version of this application can be run.

– Then -- run it!

– Confirm that, between PHP and HTML, it has certain, ah, input requirements for its form.

– Confirm also that the "MUCK..." button currently does NOTHING.

You should now be ready to start adding some client-side JavaScript to this application.

Part 2
The goal here is to add a little unobtrusive-style client-side JavaScript so that the "MUCK..." button does
something.

CS 328 - Week 14 Lab Exercise - 2024-04-26 p. 2 of 3

• Create a new file lab14.js, and put EXACTLY the following as its FIRST line:
"use strict";

– This says to use strict-style for your JavaScript -- this can help you in finding errors.

• put a comment with your name(s) and today's date.

• In this file, make a small function changeIt that expects nothing, returns nothing, but has the following
side-effects as its actions:

– it declares a JavaScript variable and sets it to the JavaScript DOM object corresponding to some element
in the page created by lab14.php

– it CHANGES this element's content to a noticeable value of your choice -- if this function is successfully
run, that element's displayed contents should change to what you put here.

• In this file, also put a JavaScript statement that sets the onload attribute of the JavaScript DOM window
object to an anonymous function that does the following actions:

– declares a JavaScript variable and sets it to be the JavaScript DOM object corresponding to the button
element in lab14.php

– sets this button object variable's onclick attribute to be the function changeIt.

• Edit your lab14.php so that, at the end of its head element, it includes:

– the class-approved script element to include your external JavaScript lab14.js -- and include the
attribute async="async", since it is safe to load and execute this while loading and parsing this
document's HTML.

• See if your button in lab14.php now changes your chosen element's content when it is clicked! Debug
your JavaScript until it does.

Part 3
Fun JavaScript fact #1: JavaScript's String object has a method indexOf that expects a string to look for,
and returns the index of its first occurrence in the calling string. It returns -1 if the given string does not appear
in the calling string.
Fun JavaScript fact #2: JavaScript has a modulo operator, % , that returns the remainder from integer division
of its operands. So, for example, (13 % 3) === 1

The goal here is to now get a little bit of client-side JavaScript successfully validating a form (and refusing to
submit it if it doesn't meet its validation requirements).

• In your file lab14.js, write a second function meetsSpecs. This function expects nothing, tries to make
sure some aspect or aspects of a form about to be submitted are OK, and returns true if they are, and returns
false if they are NOT.

• DECIDE on at least ONE of the following aspects of this form you want to validate:

– making sure that the user has entered a (non-empty) string with NO blanks in the first textfield, and/or

– making sure that the user has entered an EVEN integer in the number field

• declare a JavaScript variable and set it to be the JavaScript DOM object corresponding to each form widget
you choose to validate

• write an if statement to do the desired check of the value in that JavaScript variable's value data field for

CS 328 - Week 14 Lab Exercise - 2024-04-26 p. 2 of 3

• Create a new file lab14.js, and put EXACTLY the following as its FIRST line:
"use strict";

– This says to use strict-style for your JavaScript -- this can help you in finding errors.

• put a comment with your name(s) and today's date.

• In this file, make a small function changeIt that expects nothing, returns nothing, but has the following
side-effects as its actions:

– it declares a JavaScript variable and sets it to the JavaScript DOM object corresponding to some element
in the page created by lab14.php

– it CHANGES this element's content to a noticeable value of your choice -- if this function is successfully
run, that element's displayed contents should change to what you put here.

• In this file, also put a JavaScript statement that sets the onload attribute of the JavaScript DOM window
object to an anonymous function that does the following actions:

– declares a JavaScript variable and sets it to be the JavaScript DOM object corresponding to the button
element in lab14.php

– sets this button object variable's onclick attribute to be the function changeIt.

• Edit your lab14.php so that, at the end of its head element, it includes:

– the class-approved script element to include your external JavaScript lab14.js -- and include the
attribute async="async", since it is safe to load and execute this while loading and parsing this
document's HTML.

• See if your button in lab14.php now changes your chosen element's content when it is clicked! Debug
your JavaScript until it does.

Part 3
Fun JavaScript fact #1: JavaScript's String object has a method indexOf that expects a string to look for,
and returns the index of its first occurrence in the calling string. It returns -1 if the given string does not appear
in the calling string.
Fun JavaScript fact #2: JavaScript has a modulo operator, % , that returns the remainder from integer division
of its operands. So, for example, (13 % 3) === 1

The goal here is to now get a little bit of client-side JavaScript successfully validating a form (and refusing to
submit it if it doesn't meet its validation requirements).

• In your file lab14.js, write a second function meetsSpecs. This function expects nothing, tries to make
sure some aspect or aspects of a form about to be submitted are OK, and returns true if they are, and returns
false if they are NOT.

• DECIDE on at least ONE of the following aspects of this form you want to validate:

– making sure that the user has entered a (non-empty) string with NO blanks in the first textfield, and/or

– making sure that the user has entered an EVEN integer in the number field

• declare a JavaScript variable and set it to be the JavaScript DOM object corresponding to each form widget
you choose to validate

• write an if statement to do the desired check of the value in that JavaScript variable's value data field for

CS 328 - Week 14 Lab Exercise - 2024-04-26 p. 3 of 3

each form widget you choose to validate

– if it fails that check, use the JavaScript alert function to print a suitable complaint in a JavaScript pop-
up window, and return false to prevent the form from being submitted.

– otherwise, return true

• In your file lab14.js, in the anonymous function that you set to be the value of window's onload
attribute, also add the following to what you have from Part 2:

– declare a JavaScript variable and set it to be the JavaScript DOM object corresponding to the form
element in the initial state of lab14.php

– what if we are here in this PHP application's second state? Then there will be NO such form, and the
previous statement would set that JavaScript variable to null

– SO: write an if statement that checks to see if this JavaScript variable is NOT null, and only if it is
NOT null should it:

– set the onsubmit data field for this JavaScript object representing the form to the function
meetsSpecs.

– (that is, we don't want to try to change a document element that isn't currently part of the document!
But if this form IS part of the current document, add a little event hander to check its entered contents
and only allow it to be submitted if it passes those checks.)

• See if trying to submit lab14.php's first state's form with a "bad" input into your chosen textfield now
causes your JavaScript pop-up to display, and for the form NOT to be submitted! Debug your JavaScript until
it does.

Submit all of your files using a lab number of 94.

• If you work in a pair: I will leave it up to the navigator to decide if they would like to UPDATE their
lab14.php so their opening comment includes the URL to their copy, or if they want to leave the URL for
the driver's copy.

– HOWEVER: remember that you will lose some credit if this URL does not work when I or the grader
paste your submitted file's URL into a browser, in either case.

CS 328 - Week 14 Lab Exercise - 2024-04-26 p. 3 of 3

each form widget you choose to validate

– if it fails that check, use the JavaScript alert function to print a suitable complaint in a JavaScript pop-
up window, and return false to prevent the form from being submitted.

– otherwise, return true

• In your file lab14.js, in the anonymous function that you set to be the value of window's onload
attribute, also add the following to what you have from Part 2:

– declare a JavaScript variable and set it to be the JavaScript DOM object corresponding to the form
element in the initial state of lab14.php

– what if we are here in this PHP application's second state? Then there will be NO such form, and the
previous statement would set that JavaScript variable to null

– SO: write an if statement that checks to see if this JavaScript variable is NOT null, and only if it is
NOT null should it:

– set the onsubmit data field for this JavaScript object representing the form to the function
meetsSpecs.

– (that is, we don't want to try to change a document element that isn't currently part of the document!
But if this form IS part of the current document, add a little event hander to check its entered contents
and only allow it to be submitted if it passes those checks.)

• See if trying to submit lab14.php's first state's form with a "bad" input into your chosen textfield now
causes your JavaScript pop-up to display, and for the form NOT to be submitted! Debug your JavaScript until
it does.

Submit all of your files using a lab number of 94.

• If you work in a pair: I will leave it up to the navigator to decide if they would like to UPDATE their
lab14.php so their opening comment includes the URL to their copy, or if they want to leave the URL for
the driver's copy.

– HOWEVER: remember that you will lose some credit if this URL does not work when I or the grader
paste your submitted file's URL into a browser, in either case.

	Deadline
	Purpose
	How to submit
	Requirements
	Part 1
	Part 2
	Part 3

