
CS 328 - PHP Coding Standards so far p. 1

CS 328 PHP Coding Standards so far
• last modified: 2025-04-05

• For CS 328, you are expected to use ONLY the following two types of tags for your PHP embedded
within a document:
<?php
 ...
?>

or
<?= ... ?>

– I'll call these regular PHP tags and PHP expression tags, respectively, below.

• For CS 328, we'll put the opening and closing parts of a regular PHP tag (<?php and ?>) each on
their own line, as shown above.

• Do the regular PHP tag's opening and closing parts need to line up? They can, as shown above, and
when possible do so. However, see below for some possible exceptions.

– Typically, indent the PHP statements within a regular PHP tag at least 3 spaces, and line then up.

– BUT sometimes, for example when "jumping" in and out of static HTML, it is acceptable to line
up its contents even with the regular PHP tag's parts.

– AND I'll accept the opening and closing parts for regular PHP tags NOT lined-up with each other
if they are instead lined up with the surrounding code, if the result maintains "overall" logic
indentation in a pleasing way.

– ...and HERE docs have their own required indentation idiosyncrasies!

– (the goal: for your document including PHP to be neat and readable)

• It is encouraged to place PHP expression tags inline within HTML or document content. For
example,
<h1> Welcome to <?= $destination ?>! </h1>

• While the PHP Engine may not enforce these, you are expected to:

– end each statement within a regular PHP tag with a semicolon, but

– AVOID putting a semicolon after the expression in a PHP expression tag.

• Unless you genuinely want the contents of a file to be able to be included more than once in a
document (as for, perhaps, frequently-used HTML snippets), use require_once or
include_once rather than require or include.

– ...and choose between require_once or include_once based on whether the content being
included SHOULD cause a fatal error if not available or not, respectively.

• When you are including a PHP function from another file into a PHP document, use
require_once within that document's head element.

CS 328 - PHP Coding Standards so far p. 1

CS 328 PHP Coding Standards so far
• last modified: 2025-04-05

• For CS 328, you are expected to use ONLY the following two types of tags for your PHP embedded
within a document:
<?php
 ...
?>

or
<?= ... ?>

– I'll call these regular PHP tags and PHP expression tags, respectively, below.

• For CS 328, we'll put the opening and closing parts of a regular PHP tag (<?php and ?>) each on
their own line, as shown above.

• Do the regular PHP tag's opening and closing parts need to line up? They can, as shown above, and
when possible do so. However, see below for some possible exceptions.

– Typically, indent the PHP statements within a regular PHP tag at least 3 spaces, and line then up.

– BUT sometimes, for example when "jumping" in and out of static HTML, it is acceptable to line
up its contents even with the regular PHP tag's parts.

– AND I'll accept the opening and closing parts for regular PHP tags NOT lined-up with each other
if they are instead lined up with the surrounding code, if the result maintains "overall" logic
indentation in a pleasing way.

– ...and HERE docs have their own required indentation idiosyncrasies!

– (the goal: for your document including PHP to be neat and readable)

• It is encouraged to place PHP expression tags inline within HTML or document content. For
example,
<h1> Welcome to <?= $destination ?>! </h1>

• While the PHP Engine may not enforce these, you are expected to:

– end each statement within a regular PHP tag with a semicolon, but

– AVOID putting a semicolon after the expression in a PHP expression tag.

• Unless you genuinely want the contents of a file to be able to be included more than once in a
document (as for, perhaps, frequently-used HTML snippets), use require_once or
include_once rather than require or include.

– ...and choose between require_once or include_once based on whether the content being
included SHOULD cause a fatal error if not available or not, respectively.

• When you are including a PHP function from another file into a PHP document, use
require_once within that document's head element.

CS 328 - PHP Coding Standards so far p. 2

• You are expected to avoid using print and echo statements in regular PHP tags in CS 328 (unless
you get prior, explicit approval).

• PHP indentation guidelines: when you are using the style of control structures that include { and }:

– the statement(s) within the body of the control structure should not be on the same line as the
start of the control structure

– the statement(s) within the body of the control structure should be indented by 3 or more spaces,
and lined up

• goto and continue statements are not to be used, and break statements may only be used in
switch statements.

• You are expected to treat ALL user input as UNTRUSTED -- don't send it anywhere without trying
to take steps to make sure that any attacks are detected and neutralized.

– To guard against cross-site scripting, appropriately use PHP functions such as
htmlspecialchars, trim, strip_tags, and htmlentities.

– To guard against SQL injection, avoid dynamic SQL statements built using concatenation by, for
example, use of bind variables, carefully-designed Oracle stored procedures, and carefully-
designed Oracle stored functions.

– (When you must use dynamic SQL statements built using concatenation, take special care to
somehow check what is being concatenated.)

CS 328 - PHP Coding Standards so far p. 2

• You are expected to avoid using print and echo statements in regular PHP tags in CS 328 (unless
you get prior, explicit approval).

• PHP indentation guidelines: when you are using the style of control structures that include { and }:

– the statement(s) within the body of the control structure should not be on the same line as the
start of the control structure

– the statement(s) within the body of the control structure should be indented by 3 or more spaces,
and lined up

• goto and continue statements are not to be used, and break statements may only be used in
switch statements.

• You are expected to treat ALL user input as UNTRUSTED -- don't send it anywhere without trying
to take steps to make sure that any attacks are detected and neutralized.

– To guard against cross-site scripting, appropriately use PHP functions such as
htmlspecialchars, trim, strip_tags, and htmlentities.

– To guard against SQL injection, avoid dynamic SQL statements built using concatenation by, for
example, use of bind variables, carefully-designed Oracle stored procedures, and carefully-
designed Oracle stored functions.

– (When you must use dynamic SQL statements built using concatenation, take special care to
somehow check what is being concatenated.)

