
CS 328 - Basics of Oracle/PHP Bind Variables p. 1 of 4
last modified: 2025-04-06

Basics of Oracle/PHP Bind Variables
WHAT is SQL Injection?
SQL injection is when someone tries to "inject" additional SQL clauses into a dynamic SQL statement --
one built at run time, especially one built based on user input.

You can try this out in sqlplus, with the SQL*Plus operator & you can use for interactive input in
sqlplus:

SQL> select empl_last_name
 from empl
 where job_title = &job_ttl;

Enter value for job_ttl: 'Manager'

EMPL_LAST_NAME

Jones
Blake
Raimi

This is clearly intended for listing the names of employees with a particular job title.

But what if the user enters more than just a job title? For example: (recall that / re-runs the latest SQL
statement):

SQL> /

Enter value for job_ttl: 'Manager' or 1=1

...now ALL of the employee's names are selected, because the injected or clause, with an always-true
operand, makes the where clause always true, so that all the rows of the specified table are selected.

A union operator can open the door to obtaining even data about different columns, even different
tables:

SQL> /

Enter value for job_ttl: 'Manager' union select table_name from
user_tables

...now ALL of the table names in the current database that are readable by this Oracle account are selected
along with the names of employees with job title of 'Manager'!

You can get names of columns of other tables, also -- as just one example:

CS 328 - Basics of Oracle/PHP Bind Variables p. 1 of 4
last modified: 2025-04-06

Basics of Oracle/PHP Bind Variables
WHAT is SQL Injection?
SQL injection is when someone tries to "inject" additional SQL clauses into a dynamic SQL statement --
one built at run time, especially one built based on user input.

You can try this out in sqlplus, with the SQL*Plus operator & you can use for interactive input in
sqlplus:

SQL> select empl_last_name
 from empl
 where job_title = &job_ttl;

Enter value for job_ttl: 'Manager'

EMPL_LAST_NAME

Jones
Blake
Raimi

This is clearly intended for listing the names of employees with a particular job title.

But what if the user enters more than just a job title? For example: (recall that / re-runs the latest SQL
statement):

SQL> /

Enter value for job_ttl: 'Manager' or 1=1

...now ALL of the employee's names are selected, because the injected or clause, with an always-true
operand, makes the where clause always true, so that all the rows of the specified table are selected.

A union operator can open the door to obtaining even data about different columns, even different
tables:

SQL> /

Enter value for job_ttl: 'Manager' union select table_name from
user_tables

...now ALL of the table names in the current database that are readable by this Oracle account are selected
along with the names of employees with job title of 'Manager'!

You can get names of columns of other tables, also -- as just one example:

CS 328 - Basics of Oracle/PHP Bind Variables p. 2 of 4
last modified: 2025-04-06

SQL> /

Enter value for job_ttl: 'Manager' union select column_name from
user_tab_columns where table_name = 'DEPT'

That's from sqlplus -- but imagine a form that has a select/drop-down with job titles, and a PHP
responding to that form that dynamically concatenates the job title the user selects to complete a select
statement. If a rogue user builds their own form instead, that adds a union clause like one of those
above, they could use SQL injection from that form, also.

One weapon against SQL injection is to use OCI bind variables instead of concatenation to complete a
dynamic SQL select statement.

WHEN should you use bind variables?
You should use these whenever possible as an alternative to concatenation when building a dynamic
SQL statement, one that is built by the PHP (as opposed to being hard-coded), ESPECIALLY when it is
being built based on user-provided information.

(You will also use them for the arguments in PL/SQL stored procedures and functions.)

Note that they may not be used to replace column or table names.

HOW do you write a bind variable in a PHP string
containing a SQL statement?

You may have multiple bind variables in a PHP string containing a SQL statement.

You get to choose their names, making sure those names begin with a colon (:).

For example, this query string contains two bind variables, :chosen_dept and :chosen_mgr :

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

Notice that no special quoting is necessary -- when the value is bound later, the system will quote the
bound value as needed!

WHEN and HOW do you bind a value to a bind variable?
You need to do this:

• AFTER you create a statement object for this query using oci_parse,
• and BEFORE you execute that statement object using oci_execute.

CS 328 - Basics of Oracle/PHP Bind Variables p. 2 of 4
last modified: 2025-04-06

SQL> /

Enter value for job_ttl: 'Manager' union select column_name from
user_tab_columns where table_name = 'DEPT'

That's from sqlplus -- but imagine a form that has a select/drop-down with job titles, and a PHP
responding to that form that dynamically concatenates the job title the user selects to complete a select
statement. If a rogue user builds their own form instead, that adds a union clause like one of those
above, they could use SQL injection from that form, also.

One weapon against SQL injection is to use OCI bind variables instead of concatenation to complete a
dynamic SQL select statement.

WHEN should you use bind variables?
You should use these whenever possible as an alternative to concatenation when building a dynamic
SQL statement, one that is built by the PHP (as opposed to being hard-coded), ESPECIALLY when it is
being built based on user-provided information.

(You will also use them for the arguments in PL/SQL stored procedures and functions.)

Note that they may not be used to replace column or table names.

HOW do you write a bind variable in a PHP string
containing a SQL statement?

You may have multiple bind variables in a PHP string containing a SQL statement.

You get to choose their names, making sure those names begin with a colon (:).

For example, this query string contains two bind variables, :chosen_dept and :chosen_mgr :

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

Notice that no special quoting is necessary -- when the value is bound later, the system will quote the
bound value as needed!

WHEN and HOW do you bind a value to a bind variable?
You need to do this:

• AFTER you create a statement object for this query using oci_parse,
• and BEFORE you execute that statement object using oci_execute.

CS 328 - Basics of Oracle/PHP Bind Variables p. 3 of 4
last modified: 2025-04-06

You do it using an oci_bind_by_name statement for each bind variable.

When a bind variable is used for input purposes -- as is the case for a SQL statement --
oci_bind_by_name expects THREE arguments:

• the statement object for the statement containing bind variables
• the bind variable to have a value bound to it, written in quotes
• an expression giving the desired value to bind to that bind variable in the next execution of that

statement object.

For example, if you have successfully connected to Oracle using oci_connect, and assigned the
returned connection object to a variable named $conn, and you also have:

$desired_dept = strip_tags($_POST["dept_wanted"]);
$desired_mgr = strip_tags($_POST["mgr_chosen"]);

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

$empl_query_stmt = oci_parse($conn, $empl_query_string);

...then you can bind values to that query's bind variables using:

oci_bind_by_name($empl_query_stmt, ":chosen_dept", $desired_dept);
oci_bind_by_name($empl_query_stmt, ":chosen_mgr", $desired_mgr);

And now you can execute the query using oci_execute:

oci_execute($empl_query_stmt, OCI_DEFAULT);

...and proceed as usual.

FUN FACT: if you'd like to run this query more than once
with different values...

...just call oci_bind_by_name AGAIN with the next desired value for a bind variable, and then call
oci_execute AGAIN -- you can reuse the statement, and it turns out this kind of reuse is quite
efficient!

One final comment on advantages of bind variables
From https://www.php.net/oci_bind_by_name:

* "Binding is important for Oracle database performance and also as a way to avoid SQL Injection
security issues.

CS 328 - Basics of Oracle/PHP Bind Variables p. 3 of 4
last modified: 2025-04-06

You do it using an oci_bind_by_name statement for each bind variable.

When a bind variable is used for input purposes -- as is the case for a SQL statement --
oci_bind_by_name expects THREE arguments:

• the statement object for the statement containing bind variables
• the bind variable to have a value bound to it, written in quotes
• an expression giving the desired value to bind to that bind variable in the next execution of that

statement object.

For example, if you have successfully connected to Oracle using oci_connect, and assigned the
returned connection object to a variable named $conn, and you also have:

$desired_dept = strip_tags($_POST["dept_wanted"]);
$desired_mgr = strip_tags($_POST["mgr_chosen"]);

$empl_query_string = "select salary, hiredate
 from empl
 where dept_num = :chosen_dept
 and mgr = :chosen_mgr";

$empl_query_stmt = oci_parse($conn, $empl_query_string);

...then you can bind values to that query's bind variables using:

oci_bind_by_name($empl_query_stmt, ":chosen_dept", $desired_dept);
oci_bind_by_name($empl_query_stmt, ":chosen_mgr", $desired_mgr);

And now you can execute the query using oci_execute:

oci_execute($empl_query_stmt, OCI_DEFAULT);

...and proceed as usual.

FUN FACT: if you'd like to run this query more than once
with different values...

...just call oci_bind_by_name AGAIN with the next desired value for a bind variable, and then call
oci_execute AGAIN -- you can reuse the statement, and it turns out this kind of reuse is quite
efficient!

One final comment on advantages of bind variables
From https://www.php.net/oci_bind_by_name:

* "Binding is important for Oracle database performance and also as a way to avoid SQL Injection
security issues.

CS 328 - Basics of Oracle/PHP Bind Variables p. 4 of 4
last modified: 2025-04-06

* Binding allows the database to reuse the statement context and caches from previous executions
of the statement, even if another user or process originally executed it.

* Binding reduces SQL Injection concerns because the data associated with a bind variable is
never treated as part of the SQL statement. It does not need quoting or escaping.

* PHP variables that have been bound can be changed and the statement re-executed without
needing to re-parse the statement or re-bind."

CS 328 - Basics of Oracle/PHP Bind Variables p. 4 of 4
last modified: 2025-04-06

* Binding allows the database to reuse the statement context and caches from previous executions
of the statement, even if another user or process originally executed it.

* Binding reduces SQL Injection concerns because the data associated with a bind variable is
never treated as part of the SQL statement. It does not need quoting or escaping.

* PHP variables that have been bound can be changed and the statement re-executed without
needing to re-parse the statement or re-bind."

	WHAT is SQL Injection?
	WHEN should you use bind variables?
	HOW do you write a bind variable in a PHP string containing a SQL statement?
	WHEN and HOW do you bind a value to a bind variable?
	FUN FACT: if you'd like to run this query more than once with different values...
	One final comment on advantages of bind variables

