
CS 328 - Homework 3 p. 1 of 8

CS 328 - Homework 3

Deadline
11:59 pm on Friday, February 14, 2025 

Purpose
To let me know your "second" database you will be building several application upon, to practice more 
with writing and (at-least-partially) validating more strict-style HTML, including more practice with 
table and form elements, and to write some SQL statements both for review and to help get more 
familiar with the bookstore tables before using them with PL/SQL on future course assignments.  

How to submit
Problem 1's files should be submitted with the special homework number of 33, as described below.

Then, each time you wish to submit your work for Problems 2 onward, submit those files using 
~st10/328submit on nrs-projects, with a homework number of  3.

Important note: It is quite likely that your SQL files will be in a different directory than your HTML 
files. That's fine, and preferable! 

• Just remember that you need to run ~st10/328submit from EACH directory with files to be 
submitted for Homework 3.

Homework 3 Requirements/Set-up 
• For this homework's problems, the only CSS permitted is EITHER:

– Just the external CSS normalize.css included in html-template.html, OR

– The external CSS normalize.css included in html-template.html, after which you 
also put:
<link href="https://nrs-projects.humboldt.edu/~st10/styles/lab3-table.css" 
      type="text/css" rel="stylesheet" />

(and this would be right BEFORE the head elements closing tag)

...which adds a little mostly-table-related formatting.

• For an img element, note that it needs to validate as strict-style HTML. 

– If its URL does not validate as strict-style HTML when used as your img element's src 
attribute, 

make a copy of the image in your nrs-projects account (if you can legally do so) or use a service 
such as such as tinyurl to avoid problematic characters, and use that URL instead.

• You are expected to put your HTML documents for Homework 3 into a sub-directory with 

CS 328 - Homework 3 p. 1 of 8

CS 328 - Homework 3

Deadline
11:59 pm on Friday, February 14, 2025 

Purpose
To let me know your "second" database you will be building several application upon, to practice more 
with writing and (at-least-partially) validating more strict-style HTML, including more practice with 
table and form elements, and to write some SQL statements both for review and to help get more 
familiar with the bookstore tables before using them with PL/SQL on future course assignments.  

How to submit
Problem 1's files should be submitted with the special homework number of 33, as described below.

Then, each time you wish to submit your work for Problems 2 onward, submit those files using 
~st10/328submit on nrs-projects, with a homework number of  3.

Important note: It is quite likely that your SQL files will be in a different directory than your HTML 
files. That's fine, and preferable! 

• Just remember that you need to run ~st10/328submit from EACH directory with files to be 
submitted for Homework 3.

Homework 3 Requirements/Set-up 
• For this homework's problems, the only CSS permitted is EITHER:

– Just the external CSS normalize.css included in html-template.html, OR

– The external CSS normalize.css included in html-template.html, after which you 
also put:
<link href="https://nrs-projects.humboldt.edu/~st10/styles/lab3-table.css" 
      type="text/css" rel="stylesheet" />

(and this would be right BEFORE the head elements closing tag)

...which adds a little mostly-table-related formatting.

• For an img element, note that it needs to validate as strict-style HTML. 

– If its URL does not validate as strict-style HTML when used as your img element's src 
attribute, 

make a copy of the image in your nrs-projects account (if you can legally do so) or use a service 
such as such as tinyurl to avoid problematic characters, and use that URL instead.

• You are expected to put your HTML documents for Homework 3 into a sub-directory with 



CS 328 - Homework 3 p. 2 of 8

permissions of 711 in your public_html directory on nrs-projects.

In this case, I am asking you to choose the name for this sub-directory. 
cd ~/public_html # make sure you are in your public_html
mkdir name-you-choose # make a directory within public_html
chmod 711 name-you-choose # make it world-executable
cd name-you-choose # go to that new subdirectory

Remember that a world-readable file my-doc.html in the public_html subdirectory name-you-
choose would have the URL:
https://nrs-projects.humboldt.edu/~your_user_name/name-you-choose/my-doc.html

– (Note: it is also perfectly fine if you choose to put your Homework 3 files in a "deeper" sub-
directory within public_html.)

Problem 1 - let me know your "second" database 
If you recall, Homework 1 - Problem 2 noted that you will be building application pieces atop another, 
second database in addition to the bookstore database, and you started considering what that database 
might be as part of Homework 1 - Problem 2's submission second-db.txt.

Homework 2's handout, in the section 'NEXT STEPS for your "second" database', provided more 
information about this, including letting you know about some posted available shred databases and 
giving you a heads-up about the files you would need to provide for your chosen second database.
So, as noted in that Homework 2 handout section, now it is time for you to let me know your "second" 
database.
Remember: several databases that several CS 325/CS 328 students have given me permission to share  
have been posted -- you can see them  at the course Canvas site, under "Modules", scrolling down to 
the section "Available Shared Databases".

• If you do decide to use one of these, you will be required to leave the original creator's name(s) in 
those files -- you may modify your copies of them, adding additional comments of "modified by:" 
with your name and the date last modified if you do so. 

• You will also be required to include a "database designed by" credit including their name(s) at the 
beginning of each application you build atop this database.

• (Understand that these have been shared as-is, so you might find errors that need to be fixed, or 
aspects you would like to change, etc.! Each time you do change them, you will be expected to 
submit the revised database file(s) along with the first homework that uses/depends on those 
revisions.)

For this homework problem, (for Homework 3 - Problem 1), you need to submit the following FIVE 
files for your selected "second" database:

• NOTE: I am considering writing scripts that search the homework submission for files with names 
that end precisely as noted below, so if yours do not, you may lose some credit.

• Your selected database' business rules file, in PDF format, in a file whose name ends in
biz-rules.pdf

CS 328 - Homework 3 p. 2 of 8

permissions of 711 in your public_html directory on nrs-projects.

In this case, I am asking you to choose the name for this sub-directory. 
cd ~/public_html # make sure you are in your public_html
mkdir name-you-choose # make a directory within public_html
chmod 711 name-you-choose # make it world-executable
cd name-you-choose # go to that new subdirectory

Remember that a world-readable file my-doc.html in the public_html subdirectory name-you-
choose would have the URL:
https://nrs-projects.humboldt.edu/~your_user_name/name-you-choose/my-doc.html

– (Note: it is also perfectly fine if you choose to put your Homework 3 files in a "deeper" sub-
directory within public_html.)

Problem 1 - let me know your "second" database 
If you recall, Homework 1 - Problem 2 noted that you will be building application pieces atop another, 
second database in addition to the bookstore database, and you started considering what that database 
might be as part of Homework 1 - Problem 2's submission second-db.txt.

Homework 2's handout, in the section 'NEXT STEPS for your "second" database', provided more 
information about this, including letting you know about some posted available shred databases and 
giving you a heads-up about the files you would need to provide for your chosen second database.
So, as noted in that Homework 2 handout section, now it is time for you to let me know your "second" 
database.
Remember: several databases that several CS 325/CS 328 students have given me permission to share  
have been posted -- you can see them  at the course Canvas site, under "Modules", scrolling down to 
the section "Available Shared Databases".

• If you do decide to use one of these, you will be required to leave the original creator's name(s) in 
those files -- you may modify your copies of them, adding additional comments of "modified by:" 
with your name and the date last modified if you do so. 

• You will also be required to include a "database designed by" credit including their name(s) at the 
beginning of each application you build atop this database.

• (Understand that these have been shared as-is, so you might find errors that need to be fixed, or 
aspects you would like to change, etc.! Each time you do change them, you will be expected to 
submit the revised database file(s) along with the first homework that uses/depends on those 
revisions.)

For this homework problem, (for Homework 3 - Problem 1), you need to submit the following FIVE 
files for your selected "second" database:

• NOTE: I am considering writing scripts that search the homework submission for files with names 
that end precisely as noted below, so if yours do not, you may lose some credit.

• Your selected database' business rules file, in PDF format, in a file whose name ends in
biz-rules.pdf



CS 328 - Homework 3 p. 3 of 8

• Your selected database' ER model file, in PDF format, in a file whose name ends in model.pdf

– If you are creating a new database: note that this model should have at least five distinct entity 
classes, with at least four relationships, at least one of which is 1:N.

– (Where does the "at least 7 relations" part come in, then? That is based on assuming some 
combination of N:M relationships, multi-valued attributes, and supertype/subtype entity classes 
in your model will result in at least two more relations when this model is converted to a design.)

• Your selected database' design given in relation-structure form (the form you used to express the 
bookstore database in Homework 1 - Problem 3's file design-bks.txt), in plain-text format, in 
a file whose name ends in design-rs.txt

• The SQL script implementing your selected database' design, in a file whose name ends in 
design.sql

– The grader or I may need to create a version of your database at some point, so you may lose 
credit if this SQL script does not successfully create empty versions of your selected database's 
tables if we try it.

• The SQL script for an initial population of your selected database' design, in a file whose name 
ends in populate.sql

– The grader or I may need to initially-populate a copy of your database at some point, so you may 
lose credit if this SQL script does not successfully initially-populate the tables created in your 
design script if we try it.

These files should be submitted using the special homework number of of 33 so that I'll know you've 
chosen your "second" database and this is it.

• If you already submitted this using this special homework number as part of Homework 2, then you 
have already completed this problem, Problem 1, for Homework 3!

• By the way, it is perfectly fine if you improve any of these files later -- just re-submit them using the 

homework number of 33 and I'll then know that's an improved updated version of the files included.

Problem 2
As you read the zyBooks Chapter 2 - "More HTML", you will see that there are numerous form 
widgets implemented using the HTML input element besides submit buttons and classic textfields!

Read about and consider these -- there are at least 14 more of them, in addition to type="submit" 
and type="text" -- demonstrated and/or described in that chapter!

Select five of these other input element types -- whose type attribute is not "submit" or "text" 
-- that you consider to be particularly useful or your favorite, noting that you will be listing them in a 
table element for this problem as described further below, and demonstrating them in a form 
element for the next problem!
Starting from the html-template.html posted on the course public site and along with this 
homework handout, (and also available on nrs-projects from ~st10/html-template.html), 
create a strict-style HTML document that meets the class style standards as well as the following 

CS 328 - Homework 3 p. 3 of 8

• Your selected database' ER model file, in PDF format, in a file whose name ends in model.pdf

– If you are creating a new database: note that this model should have at least five distinct entity 
classes, with at least four relationships, at least one of which is 1:N.

– (Where does the "at least 7 relations" part come in, then? That is based on assuming some 
combination of N:M relationships, multi-valued attributes, and supertype/subtype entity classes 
in your model will result in at least two more relations when this model is converted to a design.)

• Your selected database' design given in relation-structure form (the form you used to express the 
bookstore database in Homework 1 - Problem 3's file design-bks.txt), in plain-text format, in 
a file whose name ends in design-rs.txt

• The SQL script implementing your selected database' design, in a file whose name ends in 
design.sql

– The grader or I may need to create a version of your database at some point, so you may lose 
credit if this SQL script does not successfully create empty versions of your selected database's 
tables if we try it.

• The SQL script for an initial population of your selected database' design, in a file whose name 
ends in populate.sql

– The grader or I may need to initially-populate a copy of your database at some point, so you may 
lose credit if this SQL script does not successfully initially-populate the tables created in your 
design script if we try it.

These files should be submitted using the special homework number of of 33 so that I'll know you've 
chosen your "second" database and this is it.

• If you already submitted this using this special homework number as part of Homework 2, then you 
have already completed this problem, Problem 1, for Homework 3!

• By the way, it is perfectly fine if you improve any of these files later -- just re-submit them using the 

homework number of 33 and I'll then know that's an improved updated version of the files included.

Problem 2
As you read the zyBooks Chapter 2 - "More HTML", you will see that there are numerous form 
widgets implemented using the HTML input element besides submit buttons and classic textfields!

Read about and consider these -- there are at least 14 more of them, in addition to type="submit" 
and type="text" -- demonstrated and/or described in that chapter!

Select five of these other input element types -- whose type attribute is not "submit" or "text" 
-- that you consider to be particularly useful or your favorite, noting that you will be listing them in a 
table element for this problem as described further below, and demonstrating them in a form 
element for the next problem!
Starting from the html-template.html posted on the course public site and along with this 
homework handout, (and also available on nrs-projects from ~st10/html-template.html), 
create a strict-style HTML document that meets the class style standards as well as the following 



CS 328 - Homework 3 p. 4 of 8

requirements:

• Include prob2 somewhere in its file name, and give its file name the suffix .html .

– For example:

cp ~st10/html-template.html your-prob2-file-name.html

• Fill in the opening comment block as specified, putting in your name, the last modified date, and the 
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a 
browser!)

• Give the title element within the head element appropriate descriptive content.

Within its body element:

• Include an appropriate h1 element indicating that what follows are your choices for 5 other 
particularly-useful or 5 other favorite form widgets implemented using an input element (besides 
the classic submit button and textfield).

– (This can be as simple as "5 more input elements" or "5 other useful input widgets" or "My 
five favorite other input types", etc.)

• Include a table element with six rows and two columns that meets the CS 328 class style 
standards, that also meets the following requirements:

– It should include an appropriate caption element.

– The first row should contain column headers Type and Use for, implemented using the 
appropriate element with the appropriate attribute included for better accessibility.

– The remaining five rows should each contain the value of a type attribute described and/or 
demonstrated in zyBooks Chapter 2,
and then a short description of what that type of input should be used for.

– (For example, if you were allowed to include a row for a submit button, its type would be 
submit, and its use could be for "submitting a form's data".)

• Within its footer element, add a p element whose content includes your name.

Make sure an .xhtml copy of your document validates as strict-style HTML using 
https://validator.w3.org/nu or https://html5.validator.nu/, and submit your resulting files 
your-prob2-file-name.html and your-prob2-file-name.xhtml. 

Problem 3 
Consider the five other types of the input element that you included in Problem 2's table element.

Starting from the html-template.html posted on the course public site and along with this 
homework handout, (and also available on nrs-projects from ~st10/html-template.html), 
create a strict-style HTML document that meets the class style standards as well as the following 
requirements:

CS 328 - Homework 3 p. 4 of 8

requirements:

• Include prob2 somewhere in its file name, and give its file name the suffix .html .

– For example:

cp ~st10/html-template.html your-prob2-file-name.html

• Fill in the opening comment block as specified, putting in your name, the last modified date, and the 
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a 
browser!)

• Give the title element within the head element appropriate descriptive content.

Within its body element:

• Include an appropriate h1 element indicating that what follows are your choices for 5 other 
particularly-useful or 5 other favorite form widgets implemented using an input element (besides 
the classic submit button and textfield).

– (This can be as simple as "5 more input elements" or "5 other useful input widgets" or "My 
five favorite other input types", etc.)

• Include a table element with six rows and two columns that meets the CS 328 class style 
standards, that also meets the following requirements:

– It should include an appropriate caption element.

– The first row should contain column headers Type and Use for, implemented using the 
appropriate element with the appropriate attribute included for better accessibility.

– The remaining five rows should each contain the value of a type attribute described and/or 
demonstrated in zyBooks Chapter 2,
and then a short description of what that type of input should be used for.

– (For example, if you were allowed to include a row for a submit button, its type would be 
submit, and its use could be for "submitting a form's data".)

• Within its footer element, add a p element whose content includes your name.

Make sure an .xhtml copy of your document validates as strict-style HTML using 
https://validator.w3.org/nu or https://html5.validator.nu/, and submit your resulting files 
your-prob2-file-name.html and your-prob2-file-name.xhtml. 

Problem 3 
Consider the five other types of the input element that you included in Problem 2's table element.

Starting from the html-template.html posted on the course public site and along with this 
homework handout, (and also available on nrs-projects from ~st10/html-template.html), 
create a strict-style HTML document that meets the class style standards as well as the following 
requirements:



CS 328 - Homework 3 p. 5 of 8

• Include prob3 somewhere in its file name, and give its file name the suffix .html .

– For example:

cp ~st10/html-template.html your-prob3-file-name.html

• Fill in the opening comment block as specified, putting in your name, the last modified date, and the 
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a 
browser!)

• Give the title element within the head element appropriate descriptive content.

Within its body element:

• Include an appropriate h1 element noting that this is a form demonstrating several of the available 
types of input elements.

• Include a form element that meets the CS 328 class style standards, that also meets the following 
requirements:

– It should have an action attribute whose value is a "real"/working URL of your choice 
(because we haven't gotten to writing an actual application program to handle this form yet).

– If you select a shorter one, you'll find it easier to peruse the name=value pairs at its end 
while trying out your form in a browser.

– It should have a method attribute whose value is "get".

– It should contain at least one fieldset element that contains an appropriate legend element 
of your choice, and within this/these should be:

– at least one instance of each of the five of the input elements you included in Problem 1's 
table element

– (Depending on your choices, you might find it makes sense to include more than one 
instance of some of these five. That's fine!)

– appropriate logically-related label elements for each of those input elements 

– and also one input element with type="submit" (which does not need a logically-
related label element)

• Within its footer element, add a p element whose content includes your name.

Reminder: for this homework, you may not use any CSS to format or layout this form, and we'll never 
use the table element to format a form element, either. However, it appears that you can use 
fieldset elements, p elements, div elements, and instances of the void element br and still have it 
successfully validate as strict-style HTML.
Try filling out and submitting your form, guessing what name=value pairs should appear at the end of 
your action attribute's URL when you submit it, and see if they do.

Make sure an .xhtml copy of your document validates as strict-style HTML using 
https://validator.w3.org/nu or https://html5.validator.nu/, and submit your resulting files 
your-prob3-file-name.html and your-prob3-file-name.xhtml. 

CS 328 - Homework 3 p. 5 of 8

• Include prob3 somewhere in its file name, and give its file name the suffix .html .

– For example:

cp ~st10/html-template.html your-prob3-file-name.html

• Fill in the opening comment block as specified, putting in your name, the last modified date, and the 
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a 
browser!)

• Give the title element within the head element appropriate descriptive content.

Within its body element:

• Include an appropriate h1 element noting that this is a form demonstrating several of the available 
types of input elements.

• Include a form element that meets the CS 328 class style standards, that also meets the following 
requirements:

– It should have an action attribute whose value is a "real"/working URL of your choice 
(because we haven't gotten to writing an actual application program to handle this form yet).

– If you select a shorter one, you'll find it easier to peruse the name=value pairs at its end 
while trying out your form in a browser.

– It should have a method attribute whose value is "get".

– It should contain at least one fieldset element that contains an appropriate legend element 
of your choice, and within this/these should be:

– at least one instance of each of the five of the input elements you included in Problem 1's 
table element

– (Depending on your choices, you might find it makes sense to include more than one 
instance of some of these five. That's fine!)

– appropriate logically-related label elements for each of those input elements 

– and also one input element with type="submit" (which does not need a logically-
related label element)

• Within its footer element, add a p element whose content includes your name.

Reminder: for this homework, you may not use any CSS to format or layout this form, and we'll never 
use the table element to format a form element, either. However, it appears that you can use 
fieldset elements, p elements, div elements, and instances of the void element br and still have it 
successfully validate as strict-style HTML.
Try filling out and submitting your form, guessing what name=value pairs should appear at the end of 
your action attribute's URL when you submit it, and see if they do.

Make sure an .xhtml copy of your document validates as strict-style HTML using 
https://validator.w3.org/nu or https://html5.validator.nu/, and submit your resulting files 
your-prob3-file-name.html and your-prob3-file-name.xhtml. 



CS 328 - Homework 3 p. 6 of 8

Problem 4 
You are going to create a SQL script named new-titles.sql for this problem. Give this file 
permissions of 600 by typing this at the nrs-projects prompt:
chmod 600 new-titles.sql

As you hopefully noticed in making the relation-structure version of its tables in your Homework 1 file 
design-bks.txt, the title relation represents the bookstore's inventory, essentially -- each of its 
elements represents how many copies are available to be sold of a particular book title. This title 
relation is related to the publisher relation, representing a publisher of books.

This title relation also happens to include the cost to the bookstore of that particular book title, the 
price the bookstore sells it for, at what quantity they'd like to consider re-ordering more copies, and the 
default number they re-order at that point.
So - to review writing SQL insert statements, since they may be included within PL/SQL 
subroutines later this semester, consider the theme for your bookstore, as you described in your 
Homework 2 file about-bks.html.

Then, write a small SQL script new-titles.sql that meets these requirements:

• Start it with comment(s) containing CS 328 - HW 3 - Problem 4, your name, and the last-
modified date.

• Start spooling to a file new-titles-out.txt (and make sure you spool off at the script's 
end!)

• Write a prompt command including your name.

• Include SQL insert statements to insert at least two new rows into the title table for two book 
titles, real or imaginary, your choice, that fit in with the theme of your bookstore.

– You get to make up reasonable-to-you values for the attributes of these new title rows. 

– However, give all of their attributes values (that is, for full credit, they must all be non-null). 

• You decide on the publisher for each of these new titles, and make sure you use that publisher's 
pub_id for that title's pub_id foreign key. 

– It is fine to insert more publisher rows if you would like, but also fine to use one of the existing 
publishers for each of your new titles. 

– (If you decide to add any publisher rows, be sure to put their insert statements BEFORE the 
insert statements  for titles published by those publishers!)

• After your insert statements, write a SQL commit; statement to commit your changes.

• Remember to spool off at the end of your script.

IMPORTANT NOTE: if you need to debug your script -- or even just re-run it -- be sure to re-run 
pop-bks.sql before doing so, otherwise you might get errors due to trying to insert your new rows 
more than once! Remember that you can make a copy of this script in the same directory as your 
new-titles.sql script by using the command:

CS 328 - Homework 3 p. 6 of 8

Problem 4 
You are going to create a SQL script named new-titles.sql for this problem. Give this file 
permissions of 600 by typing this at the nrs-projects prompt:
chmod 600 new-titles.sql

As you hopefully noticed in making the relation-structure version of its tables in your Homework 1 file 
design-bks.txt, the title relation represents the bookstore's inventory, essentially -- each of its 
elements represents how many copies are available to be sold of a particular book title. This title 
relation is related to the publisher relation, representing a publisher of books.

This title relation also happens to include the cost to the bookstore of that particular book title, the 
price the bookstore sells it for, at what quantity they'd like to consider re-ordering more copies, and the 
default number they re-order at that point.
So - to review writing SQL insert statements, since they may be included within PL/SQL 
subroutines later this semester, consider the theme for your bookstore, as you described in your 
Homework 2 file about-bks.html.

Then, write a small SQL script new-titles.sql that meets these requirements:

• Start it with comment(s) containing CS 328 - HW 3 - Problem 4, your name, and the last-
modified date.

• Start spooling to a file new-titles-out.txt (and make sure you spool off at the script's 
end!)

• Write a prompt command including your name.

• Include SQL insert statements to insert at least two new rows into the title table for two book 
titles, real or imaginary, your choice, that fit in with the theme of your bookstore.

– You get to make up reasonable-to-you values for the attributes of these new title rows. 

– However, give all of their attributes values (that is, for full credit, they must all be non-null). 

• You decide on the publisher for each of these new titles, and make sure you use that publisher's 
pub_id for that title's pub_id foreign key. 

– It is fine to insert more publisher rows if you would like, but also fine to use one of the existing 
publishers for each of your new titles. 

– (If you decide to add any publisher rows, be sure to put their insert statements BEFORE the 
insert statements  for titles published by those publishers!)

• After your insert statements, write a SQL commit; statement to commit your changes.

• Remember to spool off at the end of your script.

IMPORTANT NOTE: if you need to debug your script -- or even just re-run it -- be sure to re-run 
pop-bks.sql before doing so, otherwise you might get errors due to trying to insert your new rows 
more than once! Remember that you can make a copy of this script in the same directory as your 
new-titles.sql script by using the command:



CS 328 - Homework 3 p. 7 of 8

cp ~st10/pop-bks.sql  .    # note that space and period at the end!

Make sure you turned spooling off at the end of new-titles.sql, and submit your resulting 
new-titles.sql and new-titles-out.txt. 

Problem 5 
You are going to create a SQL script named prob5.sql for this problem. Give this file permissions 
of 600 by typing this at the nrs-projects prompt:
chmod 600 prob5.sql

To continue getting more familiar with the bookstore tables, as a little more SQL warm-up and review 
before we start out coverage of PL/SQL, and for possible use in future PL/SQL subroutines, write a 
script prob5.sql that meets the following specifications:

• Start it with comment(s) containing CS 328 - HW 3 - Problem 5, your name, and the last-
modified date.

• Start spooling to a file prob5-out.txt (and make sure you spool off at the script's end!)

• Write a prompt command including your name.

• For each of the following parts, write a prompt command giving the problem part being answered, 
then your answer for that part.

Since this problem is intended to help you continue to both get familiar with the bookstore database 
and review writing SQL queries, provided along with this homework handout is an example 
prob5-out.txt so you can tell if your queries are on the right track. (Note that the new titles added 
in Problem 4 will be different between your version and mine!)

Problem 5 - part a
For future-cheezy-PL/SQL-function use...
How could you find out the current largest value for the primary key of table order_needed?

Write a SQL query that projects the current largest value of table order_needed's primary key 
attribute, giving the resulting column the name "Largest PK".

Problem 5 - part b
How might you write a SQL query whose result would let you know if there is a book title in the 
title table with a particular ISBN, in such a way that it WON'T cause an error if there is no such 
title?
Several ways are possible, but here is just one of those: you could write a query that projects the 
number of rows that have that ISBN, giving the resulting column the name "Quantity". (If no such 
row exists, this projects 0, and does not result in an error message.)
So, write TWO example versions of this query:

• Write a SQL query that projects the number of rows in the title table with ISBN of 

CS 328 - Homework 3 p. 7 of 8

cp ~st10/pop-bks.sql  .    # note that space and period at the end!

Make sure you turned spooling off at the end of new-titles.sql, and submit your resulting 
new-titles.sql and new-titles-out.txt. 

Problem 5 
You are going to create a SQL script named prob5.sql for this problem. Give this file permissions 
of 600 by typing this at the nrs-projects prompt:
chmod 600 prob5.sql

To continue getting more familiar with the bookstore tables, as a little more SQL warm-up and review 
before we start out coverage of PL/SQL, and for possible use in future PL/SQL subroutines, write a 
script prob5.sql that meets the following specifications:

• Start it with comment(s) containing CS 328 - HW 3 - Problem 5, your name, and the last-
modified date.

• Start spooling to a file prob5-out.txt (and make sure you spool off at the script's end!)

• Write a prompt command including your name.

• For each of the following parts, write a prompt command giving the problem part being answered, 
then your answer for that part.

Since this problem is intended to help you continue to both get familiar with the bookstore database 
and review writing SQL queries, provided along with this homework handout is an example 
prob5-out.txt so you can tell if your queries are on the right track. (Note that the new titles added 
in Problem 4 will be different between your version and mine!)

Problem 5 - part a
For future-cheezy-PL/SQL-function use...
How could you find out the current largest value for the primary key of table order_needed?

Write a SQL query that projects the current largest value of table order_needed's primary key 
attribute, giving the resulting column the name "Largest PK".

Problem 5 - part b
How might you write a SQL query whose result would let you know if there is a book title in the 
title table with a particular ISBN, in such a way that it WON'T cause an error if there is no such 
title?
Several ways are possible, but here is just one of those: you could write a query that projects the 
number of rows that have that ISBN, giving the resulting column the name "Quantity". (If no such 
row exists, this projects 0, and does not result in an error message.)
So, write TWO example versions of this query:

• Write a SQL query that projects the number of rows in the title table with ISBN of 



CS 328 - Homework 3 p. 8 of 8

'9780131103627'.

• Write a SQL query that projects the number of rows in the title table with ISBN of 
'5555555555555' (which is a non-existent ISBN!).

Problem 5 - part c
Consider: when selling a copy of one of the titles sold by your bookstore, you might want to know that 
title's current quantity on hand (so you can decrease it after this sale), its order point (so you can 
determine if you want to order more after this sale), and its auto order quantity (so you will know how 
many you usually order if it is time to reorder it).
Write a SQL query that projects these three attributes for a title whose ISBN is '9780131103627'.

Problem 5 - part d
ISBNs are lovely for unique identifiers, but not great for human readability!
Write a SQL query that projects a single column for each title in the title database: its ISBN 
concatenated to a space, a dash, and a space, concatenated to its title, giving the resulting column the 
name  "Available Titles". 

Problem 5 - part e
Write a SQL query that projects, for each title in the title database, the title, and then the name of its 
publisher, displaying the rows in order of publisher name, and for those with the same publisher, in 
secondary order by title name.

Make sure you turned spooling off at the end of prob5.sql, and submit your resulting prob5.sql 
and prob5-out.txt. 

CS 328 - Homework 3 p. 8 of 8

'9780131103627'.

• Write a SQL query that projects the number of rows in the title table with ISBN of 
'5555555555555' (which is a non-existent ISBN!).

Problem 5 - part c
Consider: when selling a copy of one of the titles sold by your bookstore, you might want to know that 
title's current quantity on hand (so you can decrease it after this sale), its order point (so you can 
determine if you want to order more after this sale), and its auto order quantity (so you will know how 
many you usually order if it is time to reorder it).
Write a SQL query that projects these three attributes for a title whose ISBN is '9780131103627'.

Problem 5 - part d
ISBNs are lovely for unique identifiers, but not great for human readability!
Write a SQL query that projects a single column for each title in the title database: its ISBN 
concatenated to a space, a dash, and a space, concatenated to its title, giving the resulting column the 
name  "Available Titles". 

Problem 5 - part e
Write a SQL query that projects, for each title in the title database, the title, and then the name of its 
publisher, displaying the rows in order of publisher name, and for those with the same publisher, in 
secondary order by title name.

Make sure you turned spooling off at the end of prob5.sql, and submit your resulting prob5.sql 
and prob5-out.txt. 


	Deadline
	Purpose
	How to submit
	Homework 3 Requirements/Set-up
	Problem 1 - let me know your "second" database
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 5 - part a
	Problem 5 - part b
	Problem 5 - part c
	Problem 5 - part d
	Problem 5 - part e


