
CS 328 - Homework 5 p. 1 of 7

CS 328 - Homework 5

Deadline
11:59 pm on Friday, February 28, 2025

Purpose
To practice more with PL/SQL procedures and functions, including more practice with parameters,
cursor-controlled for loops, and (possibly) exception-handling.

How to submit
You complete Problems 1 and 2 on the course Canvas site (more short-answer questions on PL/SQL),
so that you can see if you are on the right track.
Each time you wish to submit files for Problems 3 onward, submit your files using
~st10/328submit on nrs-projects, with a homework number of 5.

Problem 1 - on Canvas - 5 points
Problem 1 is correctly answering the "HW 5 - Problem 1 - PL/SQL parameters, functions, and if
statements" on the course Canvas site.

Problem 2 - on Canvas - 5 points
Problem 2 is correctly answering the "HW 5 - Problem 2 - PL/SQL loops and exception-handling" on
the course Canvas site.

Requirements/Set-up for Problems 3 onward
Create a file 328hw5.sql. Give this file permissions of 600 (rw-------) by typing this at the nrs-
projects prompt:
chmod 600 328hw5.sql

Start this file with the following:

• comments containing at least your name, CS 328 - Homework 5, and the last-modified date.

• include the command to set serveroutput on

• followed by a SQL*Plus spool command to spool the results of running this SQL script to a file
named 328hw5-out.txt

• followed by a prompt command including your name

Be sure to spool off at the end of this script (after your statements for the remaining problems).

CS 328 - Homework 5 p. 1 of 7

CS 328 - Homework 5

Deadline
11:59 pm on Friday, February 28, 2025

Purpose
To practice more with PL/SQL procedures and functions, including more practice with parameters,
cursor-controlled for loops, and (possibly) exception-handling.

How to submit
You complete Problems 1 and 2 on the course Canvas site (more short-answer questions on PL/SQL),
so that you can see if you are on the right track.
Each time you wish to submit files for Problems 3 onward, submit your files using
~st10/328submit on nrs-projects, with a homework number of 5.

Problem 1 - on Canvas - 5 points
Problem 1 is correctly answering the "HW 5 - Problem 1 - PL/SQL parameters, functions, and if
statements" on the course Canvas site.

Problem 2 - on Canvas - 5 points
Problem 2 is correctly answering the "HW 5 - Problem 2 - PL/SQL loops and exception-handling" on
the course Canvas site.

Requirements/Set-up for Problems 3 onward
Create a file 328hw5.sql. Give this file permissions of 600 (rw-------) by typing this at the nrs-
projects prompt:
chmod 600 328hw5.sql

Start this file with the following:

• comments containing at least your name, CS 328 - Homework 5, and the last-modified date.

• include the command to set serveroutput on

• followed by a SQL*Plus spool command to spool the results of running this SQL script to a file
named 328hw5-out.txt

• followed by a prompt command including your name

Be sure to spool off at the end of this script (after your statements for the remaining problems).

CS 328 - Homework 5 p. 2 of 7

ASIDE: string-related Oracle functions WORK in PL/SQL!
Recall that you discussed several lovely and useful string- and date- and time-related Oracle functions
in CS 325, such as upper, which expects a character string argument and returns an all-uppercase
version of that argument. You can find a little handout describing some of these posted with the
selection of PL/SQL and SQL references at:
https://nrs-projects.humboldt.edu/~st10/s25cs328/plsql-refs.php
Look for the link "Some string- and date- and time-related SQL functions".
Happily, these functions also can be used in PL/SQL outside of select statements!

For example, if the following were included in a PL/SQL procedure:
dbms_output.put_line(lpad('Moo', 12, '.'));

...and set serveroutput on has been done, the following would be displayed to the screen:

.........Moo

Problem 3 - PL/SQL stored procedure silly_shout
The purpose of this problem is to give you practice writing a PL/SQL procedure that includes
parameters, an IF statement, and a loop.

In your PL/SQL script 328hw5.sql, write a PL/SQL stored procedure silly_shout that:

• expects two parameters, a desired message and how many times it is to be "shouted" to the screen

• prints one of the following to the screen:

– If the number of times to shout given is less than 0, the procedure should print a message to the
screen saying that it cannot show the desired message that many times (and include both the
desired message and the "bad" number of times in that message)

– Otherwise, it should print an all-uppercase version of the given message to the screen that many
times, once per line, each time concatenating TWO exclamation point characters ('!!') to the
end (get it? so it is "shouting" that message to the screen? 8-))

• returns nothing (since it is a procedure!)

For example,
exec silly_shout('howdy', 3)

...should print to the screen:
HOWDY!!
HOWDY!!
HOWDY!!

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

CS 328 - Homework 5 p. 2 of 7

ASIDE: string-related Oracle functions WORK in PL/SQL!
Recall that you discussed several lovely and useful string- and date- and time-related Oracle functions
in CS 325, such as upper, which expects a character string argument and returns an all-uppercase
version of that argument. You can find a little handout describing some of these posted with the
selection of PL/SQL and SQL references at:
https://nrs-projects.humboldt.edu/~st10/s25cs328/plsql-refs.php
Look for the link "Some string- and date- and time-related SQL functions".
Happily, these functions also can be used in PL/SQL outside of select statements!

For example, if the following were included in a PL/SQL procedure:
dbms_output.put_line(lpad('Moo', 12, '.'));

...and set serveroutput on has been done, the following would be displayed to the screen:

.........Moo

Problem 3 - PL/SQL stored procedure silly_shout
The purpose of this problem is to give you practice writing a PL/SQL procedure that includes
parameters, an IF statement, and a loop.

In your PL/SQL script 328hw5.sql, write a PL/SQL stored procedure silly_shout that:

• expects two parameters, a desired message and how many times it is to be "shouted" to the screen

• prints one of the following to the screen:

– If the number of times to shout given is less than 0, the procedure should print a message to the
screen saying that it cannot show the desired message that many times (and include both the
desired message and the "bad" number of times in that message)

– Otherwise, it should print an all-uppercase version of the given message to the screen that many
times, once per line, each time concatenating TWO exclamation point characters ('!!') to the
end (get it? so it is "shouting" that message to the screen? 8-))

• returns nothing (since it is a procedure!)

For example,
exec silly_shout('howdy', 3)

...should print to the screen:
HOWDY!!
HOWDY!!
HOWDY!!

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

CS 328 - Homework 5 p. 3 of 7

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure silly_shout.

• Follow that with at least FOUR tests of silly_shout:

– at least two with different messages and different numbers of shouts that are each greater than 1

– at least one with a number of shouts of 0

– at least one with a number of shouts that is less than 0

...EACH test including:

– prompt command(s) stating that you are about to test silly_shout and describing what you
should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling silly_shout.

Problem 4 - PL/SQL stored function title_total_cost
To get more practice writing PL/SQL stored functions, in your SQL script 328hw5.sql, write a
PL/SQL stored function title_total_cost that meets the following requirements:

• It expects a title's ISBN.

• It returns the total COST (not price!) of all of the current quantity for that title.

– For example: title_total_cost('9780871507877')= 1137.5

– (If there is no title with that ISBN, it should return -1, so the caller can know that there is no title
with this ISBN in the title table.)

• Note that there is more than one reasonable way to implement this function; at least one of these
approaches involves exception handling, and at least one of these approaches does not.

• Create an opening comment block for your function that has a function: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

– Follow that with the PL/SQL code creating your function.

• Remember to follow your PL/SQL function with:
/

show errors

• Then put a comment saying you are about to test your function title_total_cost.

CS 328 - Homework 5 p. 3 of 7

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure silly_shout.

• Follow that with at least FOUR tests of silly_shout:

– at least two with different messages and different numbers of shouts that are each greater than 1

– at least one with a number of shouts of 0

– at least one with a number of shouts that is less than 0

...EACH test including:

– prompt command(s) stating that you are about to test silly_shout and describing what you
should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling silly_shout.

Problem 4 - PL/SQL stored function title_total_cost
To get more practice writing PL/SQL stored functions, in your SQL script 328hw5.sql, write a
PL/SQL stored function title_total_cost that meets the following requirements:

• It expects a title's ISBN.

• It returns the total COST (not price!) of all of the current quantity for that title.

– For example: title_total_cost('9780871507877')= 1137.5

– (If there is no title with that ISBN, it should return -1, so the caller can know that there is no title
with this ISBN in the title table.)

• Note that there is more than one reasonable way to implement this function; at least one of these
approaches involves exception handling, and at least one of these approaches does not.

• Create an opening comment block for your function that has a function: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

– Follow that with the PL/SQL code creating your function.

• Remember to follow your PL/SQL function with:
/

show errors

• Then put a comment saying you are about to test your function title_total_cost.

CS 328 - Homework 5 p. 4 of 7

• Follow that with at least THREE tests of title_total_cost:

– at least two with different ISBNs that exist in your title table

– at least one with an ISBN that does NOT exist in your title table

...EACH test including:

– prompt command(s) stating that you are about to test title_total_cost and describe
what you should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Remember that:

– You will need to declare a SQL*Plus local variable to hold the result returned by your
function.

– The exec command is a little different when calling a function than when calling a
procedure.

– You can use the print command to display the value of a SQL*Plus local variable.

ALTERNATIVE option for TESTING title_total_cost:
• You may use Homework 4 - Problem 7's PL/SQL stored procedure print_test for your tests,

first including a prompt command to state that you are testing title_total_cost, and then,
for each of your tests:

– using a first argument to print_test that is a string containing a boolean expression
containing an example call to title_total_cost and what it should return,

– and using a second argument to print_test that is that boolean expression.

• For example,

(recalling that you print a single quote in SQL by putting two single quotes,

and that when you want to extend a SQL*Plus command to a next line, you must end the first line
with a DASH):

exec print_test('title_total_cost(''9780871507877'') = 1137.5',-
 title_total_cost('9780871507877') = 1137.5)

Problem 5 - PL/SQL stored procedure titles_in_range
The purpose of this problem is to give you more practice writing a cursor-controlled for loop.

In your PL/SQL script 328hw5.sql, write a PL/SQL stored procedure titles_in_range that:

• expects two parameters, the desired low end of a price range and the desired high end of a price
range

• prints to the screen, for all titles whose title price (not cost!) are greater than or equal to the desired
low end given, and less than or equal to the desired high end given:

CS 328 - Homework 5 p. 4 of 7

• Follow that with at least THREE tests of title_total_cost:

– at least two with different ISBNs that exist in your title table

– at least one with an ISBN that does NOT exist in your title table

...EACH test including:

– prompt command(s) stating that you are about to test title_total_cost and describe
what you should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Remember that:

– You will need to declare a SQL*Plus local variable to hold the result returned by your
function.

– The exec command is a little different when calling a function than when calling a
procedure.

– You can use the print command to display the value of a SQL*Plus local variable.

ALTERNATIVE option for TESTING title_total_cost:
• You may use Homework 4 - Problem 7's PL/SQL stored procedure print_test for your tests,

first including a prompt command to state that you are testing title_total_cost, and then,
for each of your tests:

– using a first argument to print_test that is a string containing a boolean expression
containing an example call to title_total_cost and what it should return,

– and using a second argument to print_test that is that boolean expression.

• For example,

(recalling that you print a single quote in SQL by putting two single quotes,

and that when you want to extend a SQL*Plus command to a next line, you must end the first line
with a DASH):

exec print_test('title_total_cost(''9780871507877'') = 1137.5',-
 title_total_cost('9780871507877') = 1137.5)

Problem 5 - PL/SQL stored procedure titles_in_range
The purpose of this problem is to give you more practice writing a cursor-controlled for loop.

In your PL/SQL script 328hw5.sql, write a PL/SQL stored procedure titles_in_range that:

• expects two parameters, the desired low end of a price range and the desired high end of a price
range

• prints to the screen, for all titles whose title price (not cost!) are greater than or equal to the desired
low end given, and less than or equal to the desired high end given:

CS 328 - Homework 5 p. 5 of 7

– a '$'

– then the title's price,

– then a blank, a dash, and a blank,

– then the title's name,

– then a colon and a blank,

– and then the title's quantity,

– ...in first order of the title price (lowest to highest) and in secondary order of title name.

– (NOTE: For the case where there are no titles with prices in the given range, it is fine if your
procedure simply prints nothing.)

• returns nothing (since it is a procedure!)

For example,
exec titles_in_range(30, 40)

...should print to the screen:
$31.5 - Financial Accounting: 10
$34.95 - Computers and Data Processing: 15
$35.95 - Operating Systems: A Systematic View: 5
$37.95 - An Introduction to Database Systems: 10
$37.95 - Data Base Management: 20
$37.95 - Problem Solving and Structured Programming: 12
$39.95 - The C Programming Language: 10
$40 - Software Engineering: 10

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• For full credit, you must appropriately use a cursor-controlled for loop.

– (Note that there are examples of these in 328lect05-2.sql's procedure loopy, its third and
fourth loops.)

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure titles_in_range.

• Follow that with at least THREE tests of titles_in_range:

– at least two with different low-end prices and different high-end prices that do have some
existing titles between them

CS 328 - Homework 5 p. 5 of 7

– a '$'

– then the title's price,

– then a blank, a dash, and a blank,

– then the title's name,

– then a colon and a blank,

– and then the title's quantity,

– ...in first order of the title price (lowest to highest) and in secondary order of title name.

– (NOTE: For the case where there are no titles with prices in the given range, it is fine if your
procedure simply prints nothing.)

• returns nothing (since it is a procedure!)

For example,
exec titles_in_range(30, 40)

...should print to the screen:
$31.5 - Financial Accounting: 10
$34.95 - Computers and Data Processing: 15
$35.95 - Operating Systems: A Systematic View: 5
$37.95 - An Introduction to Database Systems: 10
$37.95 - Data Base Management: 20
$37.95 - Problem Solving and Structured Programming: 12
$39.95 - The C Programming Language: 10
$40 - Software Engineering: 10

Here are additional requirements for this problem:

• Create an opening comment block for your procedure that has a procedure: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• For full credit, you must appropriately use a cursor-controlled for loop.

– (Note that there are examples of these in 328lect05-2.sql's procedure loopy, its third and
fourth loops.)

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure titles_in_range.

• Follow that with at least THREE tests of titles_in_range:

– at least two with different low-end prices and different high-end prices that do have some
existing titles between them

CS 328 - Homework 5 p. 6 of 7

– at least one with a low-end price and a high-end price that do NOT have any existing titles
between them

...EACH test including:

– prompt command(s) stating that you are about to test titles_in_range and describing
what you should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling titles_in_range.

Problem 6 - PL/SQL stored function get_pub
For still-more practice writing PL/SQL stored functions, in your SQL script 328hw5.sql, write a
PL/SQL stored function get_pub that meets the following requirements:

• It expects a title's ISBN.

• It returns the name of the publisher (not the publisher ID) for the title with that ISBN.

– For example: get_pub('9780262534802') = 'The MIT Press'

– (If there is no title with that ISBN, it should return 'ISBN not found', so the caller can
know there is no title with this ISBN in the title table.)

• Note that there is more than one reasonable way to implement this function; at least one of these
approaches involves exception handling, and at least one of these approaches does not.

• Create an opening comment block for your function that has a function: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

– Follow that with the PL/SQL code creating your function.

• Remember to follow your PL/SQL function with:
/

show errors

• Then put a comment saying you are about to test your function get_pub.

• Follow that with at least THREE tests of get_pub:

– at least two with different ISBNs (that have different publishers) that exist in your title table

– at least one with an ISBN that does NOT exist in your title table

...EACH test including:

– prompt command(s) stating that you are about to test get_pub and describing what you
should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

CS 328 - Homework 5 p. 6 of 7

– at least one with a low-end price and a high-end price that do NOT have any existing titles
between them

...EACH test including:

– prompt command(s) stating that you are about to test titles_in_range and describing
what you should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

– Then write a SQL*Plus command calling titles_in_range.

Problem 6 - PL/SQL stored function get_pub
For still-more practice writing PL/SQL stored functions, in your SQL script 328hw5.sql, write a
PL/SQL stored function get_pub that meets the following requirements:

• It expects a title's ISBN.

• It returns the name of the publisher (not the publisher ID) for the title with that ISBN.

– For example: get_pub('9780262534802') = 'The MIT Press'

– (If there is no title with that ISBN, it should return 'ISBN not found', so the caller can
know there is no title with this ISBN in the title table.)

• Note that there is more than one reasonable way to implement this function; at least one of these
approaches involves exception handling, and at least one of these approaches does not.

• Create an opening comment block for your function that has a function: part and purpose:
part in the same style as used in posted class examples. (You don't have to give an examples: part,
but you can if you wish.)

– Follow that with the PL/SQL code creating your function.

• Remember to follow your PL/SQL function with:
/

show errors

• Then put a comment saying you are about to test your function get_pub.

• Follow that with at least THREE tests of get_pub:

– at least two with different ISBNs (that have different publishers) that exist in your title table

– at least one with an ISBN that does NOT exist in your title table

...EACH test including:

– prompt command(s) stating that you are about to test get_pub and describing what you
should see if it is working properly.

– (Your description should be specific enough that someone looking just at the spooled output
can tell if the test passed or not.)

CS 328 - Homework 5 p. 7 of 7

– Remember that:

– You will need to declare a SQL*Plus local variable to hold the result returned by your
function.

– The exec command is a little different when calling a function than when calling a
procedure.

– You can use the print command to display the value of a SQL*Plus local variable.

ALTERNATIVE option for TESTING get_pub:
• You may use Homework 4 - Problem 7's PL/SQL stored procedure print_test for your tests,

first including a prompt command to state that you are testing get_pub, and then, for each of
your tests:

– using a first argument to print_test that is a string containing a boolean expression
containing an example call to get_pub and what it should return,

– and using a second argument to print_test that is that boolean expression.

• For example,

(recalling that you print a single quote in SQL by putting two single quotes,

and that when you want to extend a SQL*Plus command to a next line, you must end the first line
with a DASH):
exec print_test('get_pub(''9780262534802'') = ''The MIT Press''',-

 get_pub('9780262534802') = 'The MIT Press')

Make sure you turned spooling off at the end of 328hw5.sql, and, each time you submit your work
thus far, submit your latest 328hw5.sql and its corresponding 328hw5-out.txt.

CS 328 - Homework 5 p. 7 of 7

– Remember that:

– You will need to declare a SQL*Plus local variable to hold the result returned by your
function.

– The exec command is a little different when calling a function than when calling a
procedure.

– You can use the print command to display the value of a SQL*Plus local variable.

ALTERNATIVE option for TESTING get_pub:
• You may use Homework 4 - Problem 7's PL/SQL stored procedure print_test for your tests,

first including a prompt command to state that you are testing get_pub, and then, for each of
your tests:

– using a first argument to print_test that is a string containing a boolean expression
containing an example call to get_pub and what it should return,

– and using a second argument to print_test that is that boolean expression.

• For example,

(recalling that you print a single quote in SQL by putting two single quotes,

and that when you want to extend a SQL*Plus command to a next line, you must end the first line
with a DASH):
exec print_test('get_pub(''9780262534802'') = ''The MIT Press''',-

 get_pub('9780262534802') = 'The MIT Press')

Make sure you turned spooling off at the end of 328hw5.sql, and, each time you submit your work
thus far, submit your latest 328hw5.sql and its corresponding 328hw5-out.txt.

	Deadline
	Purpose
	How to submit
	Problem 1 - on Canvas - 5 points
	Problem 2 - on Canvas - 5 points
	Requirements/Set-up for Problems 3 onward
	ASIDE: string-related Oracle functions WORK in PL/SQL!
	Problem 3 - PL/SQL stored procedure silly_shout
	Problem 4 - PL/SQL stored function title_total_cost
	ALTERNATIVE option for TESTING title_total_cost:

	Problem 5 - PL/SQL stored procedure titles_in_range
	Problem 6 - PL/SQL stored function get_pub
	ALTERNATIVE option for TESTING get_pub:

