
CS 328 - Homework 8 p. 1 of 10

CS 328 - Homework 8
Deadline
11:59 pm on Friday, April 4, 2025

Purpose
To get more practice with PHP postback documents that both create a form and response to that form,
and to also practice some other PHP features; to practice more with CSS; and to write a PL/SQL stored
procedure or stored function to be used on an upcoming application involving your "second" database.

How to submit
Each time you wish to submit your work-so-far, submit your files using ~st10/328submit on nrs-
projects, with a homework number of 8.

Important notes
• NOTE: you are welcome to use require_once/include_once/require/include in

your PHP documents!

– BUT when you use them in homework problems' documents, be sure to also SUBMIT copies of
all files that you are requiring/including!

• Remember: You are required to use normalize.css for all of your web pages for CS 328, and to
add link elements for additional CSS external stylesheets after this (but still within the head
element).
EXCEPT for normalize.css, DO NOT USE ANY CSS FRAMEWORKS or PREDEFINED
LIBRARIES for this course (unless you get prior, explicit permission). One of this course's
purposes is to provide you with some practice with the basics of "plain" CSS, so you can better make
use of frameworks and predefined libraries later.

• Remember: there are now CS 328 PHP Coding Standards so far posted on the public course web
site, under References -- you are also expected to follow these for all course PHP documents.

• You are expected to follow all course coding standards posted on the public course web site; course
documents are also expected to validate as "strict"-style HTML, and valid CSS.

Problem 1
FUN FACT: Here is PHP's most basic while loop:
<?php
 while (desired_expr)
 {
 statement;
 ...
 statement;

CS 328 - Homework 8 p. 1 of 10

CS 328 - Homework 8
Deadline
11:59 pm on Friday, April 4, 2025

Purpose
To get more practice with PHP postback documents that both create a form and response to that form,
and to also practice some other PHP features; to practice more with CSS; and to write a PL/SQL stored
procedure or stored function to be used on an upcoming application involving your "second" database.

How to submit
Each time you wish to submit your work-so-far, submit your files using ~st10/328submit on nrs-
projects, with a homework number of 8.

Important notes
• NOTE: you are welcome to use require_once/include_once/require/include in

your PHP documents!

– BUT when you use them in homework problems' documents, be sure to also SUBMIT copies of
all files that you are requiring/including!

• Remember: You are required to use normalize.css for all of your web pages for CS 328, and to
add link elements for additional CSS external stylesheets after this (but still within the head
element).
EXCEPT for normalize.css, DO NOT USE ANY CSS FRAMEWORKS or PREDEFINED
LIBRARIES for this course (unless you get prior, explicit permission). One of this course's
purposes is to provide you with some practice with the basics of "plain" CSS, so you can better make
use of frameworks and predefined libraries later.

• Remember: there are now CS 328 PHP Coding Standards so far posted on the public course web
site, under References -- you are also expected to follow these for all course PHP documents.

• You are expected to follow all course coding standards posted on the public course web site; course
documents are also expected to validate as "strict"-style HTML, and valid CSS.

Problem 1
FUN FACT: Here is PHP's most basic while loop:
<?php
 while (desired_expr)
 {
 statement;
 ...
 statement;

CS 328 - Homework 8 p. 2 of 10

 }
?>

Its semantics should be reasonably familiar -- when the while is reached, its desired_expr is
evaluated. If it is something PHP considers "truthy", the statements in its loop body are executed. And,
at the end of the loop body, desired_expr is evaluated again, and the loop body entered again if it
is "truthy" -- and so on, until the desired_expr evaluates to something PHP considers "falsey"
when checked after a loop body execution, at which point the loop is exited.
The purpose of this problem is to give you practice writing a postback PHP document (that both
creates a form and crafts a response to that form when it is submitted, as seen in the posted
328lect09-2.php and your Week 9 Lab Exercise's 328lab09.php), and that also happens to
include a while loop.

Using the posted html-template.html as the initial basis, create a PHP document
328hw8-1.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, after the link element specifying that this document is being styled by
normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw8-1.css that you are about to create for
this problem.

– Do not include any inline or internal CSS rules in your 328hw8-1.php.

• Within the body element, include an h1 element with appropriate content.

• Within the footer element near the end of the body element, add a p element whose content
includes your name.

• Your 328hw8-1.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw8-1.php should have an action attribute
whose action is:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

...and should contain at least:

– one number-field (an input element with type="number")

– at least ONE OTHER form widget of your choice

– a submit button (an input element with type="submit")

• When this form is submitted, the response generated by your 328hw8-1.php should VISIBLY do
something, based on the "other" form widget(s), the number of times entered into the number-field.

CS 328 - Homework 8 p. 2 of 10

 }
?>

Its semantics should be reasonably familiar -- when the while is reached, its desired_expr is
evaluated. If it is something PHP considers "truthy", the statements in its loop body are executed. And,
at the end of the loop body, desired_expr is evaluated again, and the loop body entered again if it
is "truthy" -- and so on, until the desired_expr evaluates to something PHP considers "falsey"
when checked after a loop body execution, at which point the loop is exited.
The purpose of this problem is to give you practice writing a postback PHP document (that both
creates a form and crafts a response to that form when it is submitted, as seen in the posted
328lect09-2.php and your Week 9 Lab Exercise's 328lab09.php), and that also happens to
include a while loop.

Using the posted html-template.html as the initial basis, create a PHP document
328hw8-1.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, after the link element specifying that this document is being styled by
normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw8-1.css that you are about to create for
this problem.

– Do not include any inline or internal CSS rules in your 328hw8-1.php.

• Within the body element, include an h1 element with appropriate content.

• Within the footer element near the end of the body element, add a p element whose content
includes your name.

• Your 328hw8-1.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw8-1.php should have an action attribute
whose action is:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

...and should contain at least:

– one number-field (an input element with type="number")

– at least ONE OTHER form widget of your choice

– a submit button (an input element with type="submit")

• When this form is submitted, the response generated by your 328hw8-1.php should VISIBLY do
something, based on the "other" form widget(s), the number of times entered into the number-field.

CS 328 - Homework 8 p. 3 of 10

– (This could be as simple as, for example, outputting something entered into a textfield the
number of times entered into the number-field, or the response could be something more involved
-- you get to decide!)

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw8-1.php.

– Make sure your 328hw8-1.php appropriately sanitizes ALL of the inputs provided by the user
when this form is submitted! (And remember that this care is necessary regardless of the form
control in use -- the actual request might NOT be coming from your form!)

Your 328hw8-1.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• Include rules that "nicely" (tastefully, attractively, and readably) lay out and format this form and the
response to this form.

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• If your form does not happen to include a fieldset element, then include rule(s) adding a
visible, attractive border to at least your form element.

• Include rule(s) that will result in your form not taking up the entire width of the body, and being
centered within the body.

• Include rule(s) that will result in the submit button somehow being centered within the form.

• Add rule(s) using either CSS flexbox layout or CSS grid layout, your choice, to noticeably layout
something within either your form or a container element within your form.

• Add additional CSS rules as desired to further attractively format elements of these documents.

• Make sure your resulting 328hw8-1.css validates as valid CSS.

Strict-validate the two parts generated by your 328hw8-1.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw8-1.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw8-1-1.xhtml, and put the URL of your 328hw8-1-1.xhtml into the
validator.

• Put your 328hw8-1.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw8-1-
2.xhtml, and put the URL of your 328hw8-1-2.xhtml into the validator.

Submit your resulting files:

• 328hw8-1.php (and all additional files it uses, if any)

• 328hw8-1-1.xhtml and 328hw8-1-2.xhtml

• 328hw8-1.css.

CS 328 - Homework 8 p. 3 of 10

– (This could be as simple as, for example, outputting something entered into a textfield the
number of times entered into the number-field, or the response could be something more involved
-- you get to decide!)

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw8-1.php.

– Make sure your 328hw8-1.php appropriately sanitizes ALL of the inputs provided by the user
when this form is submitted! (And remember that this care is necessary regardless of the form
control in use -- the actual request might NOT be coming from your form!)

Your 328hw8-1.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• Include rules that "nicely" (tastefully, attractively, and readably) lay out and format this form and the
response to this form.

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• If your form does not happen to include a fieldset element, then include rule(s) adding a
visible, attractive border to at least your form element.

• Include rule(s) that will result in your form not taking up the entire width of the body, and being
centered within the body.

• Include rule(s) that will result in the submit button somehow being centered within the form.

• Add rule(s) using either CSS flexbox layout or CSS grid layout, your choice, to noticeably layout
something within either your form or a container element within your form.

• Add additional CSS rules as desired to further attractively format elements of these documents.

• Make sure your resulting 328hw8-1.css validates as valid CSS.

Strict-validate the two parts generated by your 328hw8-1.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw8-1.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw8-1-1.xhtml, and put the URL of your 328hw8-1-1.xhtml into the
validator.

• Put your 328hw8-1.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw8-1-
2.xhtml, and put the URL of your 328hw8-1-2.xhtml into the validator.

Submit your resulting files:

• 328hw8-1.php (and all additional files it uses, if any)

• 328hw8-1-1.xhtml and 328hw8-1-2.xhtml

• 328hw8-1.css.

https://snook.ca/technical/colour_contrast/colour.html

CS 328 - Homework 8 p. 4 of 10

FUN FACT: HTML checkbox elements and PHP, Part 1
What you should already know about checkbox elements:
When a checkbox form widget such as the one in this fragment:
<input type="checkbox" name="game_desired" id="game_yes" />

<label for="game_yes">Check if you want to play a game</label>

...is within a form and that form is submitted, then:

• If that checkbox IS checked when the form is submitted, it sends the name=value pair:
game_desired=on

...for that checkbox.

– And, if that form had method="post", then in a PHP is handling that submission,
$_POST["game_desired"] would have the value "on".

• If that checkbox is NOT checked when the form is submitted, it sends NO name=value pair for that
checkbox.

Problem 2
The purpose of this problem is to give you a chance to try out PHP's array_key_exists function.

You can see IF an array KEY exists in a PHP associative array using:
array_key_exists($desired_key, $desired_array)

For example, for:
$my_first_assoc_array = ["a" => 1, "b" => 2, "c" => 3];

these would be true:

• array_key_exists("a", $my_first_assoc_array) === true

• array_key_exists("j", $my_first_assoc_array) === false

For this problem, you are going to create yet another postback PHP document ((that both creates a
form and crafts a response to that form when it is submitted, as seen in the posted 328lect09-
2.php and your Week 9 Lab Exercise's 328lab09.php), that also uses PHP's
array_key_exists function.

Using the posted html-template.html as the initial basis, create a PHP document
328hw8-2.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, after the link element specifying that this document is being styled by

CS 328 - Homework 8 p. 4 of 10

FUN FACT: HTML checkbox elements and PHP, Part 1
What you should already know about checkbox elements:
When a checkbox form widget such as the one in this fragment:
<input type="checkbox" name="game_desired" id="game_yes" />

<label for="game_yes">Check if you want to play a game</label>

...is within a form and that form is submitted, then:

• If that checkbox IS checked when the form is submitted, it sends the name=value pair:
game_desired=on

...for that checkbox.

– And, if that form had method="post", then in a PHP is handling that submission,
$_POST["game_desired"] would have the value "on".

• If that checkbox is NOT checked when the form is submitted, it sends NO name=value pair for that
checkbox.

Problem 2
The purpose of this problem is to give you a chance to try out PHP's array_key_exists function.

You can see IF an array KEY exists in a PHP associative array using:
array_key_exists($desired_key, $desired_array)

For example, for:
$my_first_assoc_array = ["a" => 1, "b" => 2, "c" => 3];

these would be true:

• array_key_exists("a", $my_first_assoc_array) === true

• array_key_exists("j", $my_first_assoc_array) === false

For this problem, you are going to create yet another postback PHP document ((that both creates a
form and crafts a response to that form when it is submitted, as seen in the posted 328lect09-
2.php and your Week 9 Lab Exercise's 328lab09.php), that also uses PHP's
array_key_exists function.

Using the posted html-template.html as the initial basis, create a PHP document
328hw8-2.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, after the link element specifying that this document is being styled by

CS 328 - Homework 8 p. 5 of 10

normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw8-2.css that you are about to create for
this problem.

– Do not include any inline or internal CSS rules in your 328hw8-2.php.

• Within the body element, include an h1 element with appropriate content.

• Within the footer element near the end of the body element, add a p element whose content
includes your name.

• Your 328hw8-2.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw8-2.php should have an action attribute
whose action is:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

...and should contain at least:

– a fieldset with at least four checkboxes

each of which has a DIFFERENT name attribute,

(and each with a logically-associated label element)

– You get to choose the "theme" for these checkboxes -- you need to use one that is different
from any of the posted class examples.

– a submit button (an input element with type="submit")

• When this form is submitted, the response generated by your 328hw8-2.php should include the
following:

– If at least one of the checkboxes was checked,

– it should display a ul element with an li element for each selected checkbox.

and if none of the checkboxes was checked,

– it should display a p element whose content is a statement that none were selected.

– You are expected to appropriately use the function array_key_exists in this part of your
PHP document.

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw8-2.php.

– Make sure your 328hw8-2.php appropriately sanitizes ALL of the inputs provided by the user
when this form is submitted! (Yes, even from checkboxes -- the actual request might NOT be
coming from your form!)

Your 328hw8-2.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• Include rules that "nicely" (tastefully, attractively, and readably) lay out and format this form and the
response to this form.

CS 328 - Homework 8 p. 5 of 10

normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw8-2.css that you are about to create for
this problem.

– Do not include any inline or internal CSS rules in your 328hw8-2.php.

• Within the body element, include an h1 element with appropriate content.

• Within the footer element near the end of the body element, add a p element whose content
includes your name.

• Your 328hw8-2.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw8-2.php should have an action attribute
whose action is:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

...and should contain at least:

– a fieldset with at least four checkboxes

each of which has a DIFFERENT name attribute,

(and each with a logically-associated label element)

– You get to choose the "theme" for these checkboxes -- you need to use one that is different
from any of the posted class examples.

– a submit button (an input element with type="submit")

• When this form is submitted, the response generated by your 328hw8-2.php should include the
following:

– If at least one of the checkboxes was checked,

– it should display a ul element with an li element for each selected checkbox.

and if none of the checkboxes was checked,

– it should display a p element whose content is a statement that none were selected.

– You are expected to appropriately use the function array_key_exists in this part of your
PHP document.

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw8-2.php.

– Make sure your 328hw8-2.php appropriately sanitizes ALL of the inputs provided by the user
when this form is submitted! (Yes, even from checkboxes -- the actual request might NOT be
coming from your form!)

Your 328hw8-2.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• Include rules that "nicely" (tastefully, attractively, and readably) lay out and format this form and the
response to this form.

CS 328 - Homework 8 p. 6 of 10

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• Include rule(s) that will result in your form not taking up the entire width of the body, and being
centered within the body.

• Include rule(s) that will result in the submit button somehow being centered within the form.

• Add rule(s) using either CSS flexbox layout or CSS grid layout, your choice, to noticeably layout
the fieldset containing your checkboxes.

• Add additional CSS rules as desired to further attractively format elements of these documents.

• Make sure your resulting 328hw8-2.css validates as valid CSS.

Strict-validate the two parts generated by your 328hw8-2.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw8-2.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw8-2-1.xhtml, and put the URL of your 328hw8-2-1.xhtml into the
validator.

• Put your 328hw8-2.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw8-2-
2.xhtml, and put the URL of your 328hw8-2-2.xhtml into the validator.

Submit your resulting files:

• 328hw8-2.php (and all additional files it uses, if any)

• 328hw8-2-1.xhtml and 328hw8-2-2.xhtml

• 328hw8-2.css.

FUN FACT: HTML checkbox elements and PHP, Part 2
Demonstrated in zyBooks Chapter 5 - Section 5.11 - Participation Activity

5.11.7:
IF:

• you have several "logically grouped" checkboxes

• you give them ALL the SAME name attribute that ends with []

• you give them EACH a different value attribute with a value representing that checkbox's meaning

THEN:

• If at least ONE of those checkboxes is checked when the form is submitted,

it sends a name=value pair where:

– the name is that common name attribute's value without the [],

– and the value is an array containing the value attribute values for EACH checkbox that was

CS 328 - Homework 8 p. 6 of 10

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• Include rule(s) that will result in your form not taking up the entire width of the body, and being
centered within the body.

• Include rule(s) that will result in the submit button somehow being centered within the form.

• Add rule(s) using either CSS flexbox layout or CSS grid layout, your choice, to noticeably layout
the fieldset containing your checkboxes.

• Add additional CSS rules as desired to further attractively format elements of these documents.

• Make sure your resulting 328hw8-2.css validates as valid CSS.

Strict-validate the two parts generated by your 328hw8-2.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw8-2.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw8-2-1.xhtml, and put the URL of your 328hw8-2-1.xhtml into the
validator.

• Put your 328hw8-2.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw8-2-
2.xhtml, and put the URL of your 328hw8-2-2.xhtml into the validator.

Submit your resulting files:

• 328hw8-2.php (and all additional files it uses, if any)

• 328hw8-2-1.xhtml and 328hw8-2-2.xhtml

• 328hw8-2.css.

FUN FACT: HTML checkbox elements and PHP, Part 2
Demonstrated in zyBooks Chapter 5 - Section 5.11 - Participation Activity

5.11.7:
IF:

• you have several "logically grouped" checkboxes

• you give them ALL the SAME name attribute that ends with []

• you give them EACH a different value attribute with a value representing that checkbox's meaning

THEN:

• If at least ONE of those checkboxes is checked when the form is submitted,

it sends a name=value pair where:

– the name is that common name attribute's value without the [],

– and the value is an array containing the value attribute values for EACH checkbox that was

https://snook.ca/technical/colour_contrast/colour.html

CS 328 - Homework 8 p. 7 of 10

checked at the time of submission!

• If NONE are checked, no name=value pair is sent.

That is, consider this fragment:
 <input type="checkbox" name="transport[]" value="bicycle"
 id="bike" />

 <label for="bike"> Bicycle </label>

 <input type="checkbox" name="transport[]" value="motorcar"
 id="car" />

 <label for="car"> Car </label>

 <input type="checkbox" name="transport[]" value="skatebd"
 id="board" />

 <label for="board"> Skateboard </label>

If this fragment is within a form with method="post" and that form is submitted, then:

• If, for example, the checkboxes for Bicycle and Skateboard are checked when the form is
submitted,
then $_POST["transport"] will contain an array whose values are
["bicycle", "skatebd"]

• If NONE of these checkboxes with name="transport[]" is checked when the form is
submitted, it sends NO name=value pair for any of those checkboxes.

Well, this needs to be tried out!

Problem 3
The purpose of this problem is to try out "logically grouped" checkboxes and how PHP can respond
to a form containing them.
For this problem, you are going to create yet another postback PHP document ((that both creates a
form and crafts a response to that form when it is submitted, as seen in the posted 328lect09-
2.php and your Week 9 Lab Exercise's 328lab09.php).

Using the posted html-template.html as the initial basis, create a PHP document
328hw8-3.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, after the link element specifying that this document is being styled by
normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw8-3.css that you are about to create for
this problem.

CS 328 - Homework 8 p. 7 of 10

checked at the time of submission!

• If NONE are checked, no name=value pair is sent.

That is, consider this fragment:
 <input type="checkbox" name="transport[]" value="bicycle"
 id="bike" />

 <label for="bike"> Bicycle </label>

 <input type="checkbox" name="transport[]" value="motorcar"
 id="car" />

 <label for="car"> Car </label>

 <input type="checkbox" name="transport[]" value="skatebd"
 id="board" />

 <label for="board"> Skateboard </label>

If this fragment is within a form with method="post" and that form is submitted, then:

• If, for example, the checkboxes for Bicycle and Skateboard are checked when the form is
submitted,
then $_POST["transport"] will contain an array whose values are
["bicycle", "skatebd"]

• If NONE of these checkboxes with name="transport[]" is checked when the form is
submitted, it sends NO name=value pair for any of those checkboxes.

Well, this needs to be tried out!

Problem 3
The purpose of this problem is to try out "logically grouped" checkboxes and how PHP can respond
to a form containing them.
For this problem, you are going to create yet another postback PHP document ((that both creates a
form and crafts a response to that form when it is submitted, as seen in the posted 328lect09-
2.php and your Week 9 Lab Exercise's 328lab09.php).

Using the posted html-template.html as the initial basis, create a PHP document
328hw8-3.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, after the link element specifying that this document is being styled by
normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw8-3.css that you are about to create for
this problem.

CS 328 - Homework 8 p. 8 of 10

– Do not include any inline or internal CSS rules in your 328hw8-3.php.

• Within the body element, include an h1 element with appropriate content.

• Within the footer element near the end of the body element, add a p element whose content
includes your name.

• Your 328hw8-3.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw8-3.php should have an action attribute
whose action is:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

...and should contain at least:

– a fieldset with at least four checkboxes

each of which has the SAME name attribute whose name ends with [],

each of which has a DIFFERENT value attribute whose name logically describes the choice

(and each with a logically-associated label element)

– It is fine if these have the same "theme" as those in Problem 2, but make sure you implement
them as described above, sot hat you practice with this kind of "logically grouped"
checkboxes' approach.

– a submit button (an input element with type="submit")

• When this form is submitted, the response generated by your 328hw8-3.php should include the
following:

– If at least one of the checkboxes was checked,

– it should display a ul element with an li element for each selected checkbox.

and if none of the checkboxes was checked,

– it should display a p element whose content is a statement that none were selected.

– You are expected to appropriately use the function array_key_exists in this part of your
PHP document.

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw8-3.php.

– Make sure your 328hw8-3.php appropriately sanitizes ALL of the inputs provided by the user
when this form is submitted! (Yes, even from checkboxes -- the actual request might NOT be
coming from your form!)

Your 328hw8-3.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• Include rules that "nicely" (tastefully, attractively, and readably) lay out and format this form and the
response to this form.

CS 328 - Homework 8 p. 8 of 10

– Do not include any inline or internal CSS rules in your 328hw8-3.php.

• Within the body element, include an h1 element with appropriate content.

• Within the footer element near the end of the body element, add a p element whose content
includes your name.

• Your 328hw8-3.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw8-3.php should have an action attribute
whose action is:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

...and should contain at least:

– a fieldset with at least four checkboxes

each of which has the SAME name attribute whose name ends with [],

each of which has a DIFFERENT value attribute whose name logically describes the choice

(and each with a logically-associated label element)

– It is fine if these have the same "theme" as those in Problem 2, but make sure you implement
them as described above, sot hat you practice with this kind of "logically grouped"
checkboxes' approach.

– a submit button (an input element with type="submit")

• When this form is submitted, the response generated by your 328hw8-3.php should include the
following:

– If at least one of the checkboxes was checked,

– it should display a ul element with an li element for each selected checkbox.

and if none of the checkboxes was checked,

– it should display a p element whose content is a statement that none were selected.

– You are expected to appropriately use the function array_key_exists in this part of your
PHP document.

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw8-3.php.

– Make sure your 328hw8-3.php appropriately sanitizes ALL of the inputs provided by the user
when this form is submitted! (Yes, even from checkboxes -- the actual request might NOT be
coming from your form!)

Your 328hw8-3.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• Include rules that "nicely" (tastefully, attractively, and readably) lay out and format this form and the
response to this form.

CS 328 - Homework 8 p. 9 of 10

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• Include rule(s) that will result in your form not taking up the entire width of the body, and being
centered within the body.

• Include rule(s) that will result in the submit button somehow being centered within the form.

• Add rule(s) using either CSS flexbox layout or CSS grid layout, your choice, to noticeably layout
the fieldset containing your checkboxes.

• Add additional CSS rules as desired to further attractively format elements of these documents.

• Make sure your resulting 328hw8-3.css validates as valid CSS.

Strict-validate the two parts generated by your 328hw8-3.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw8-3.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw8-3-1.xhtml, and put the URL of your 328hw8-3-1.xhtml into the
validator.

• Put your 328hw8-3.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw8-3-
2.xhtml, and put the URL of your 328hw8-3-2.xhtml into the validator.

Submit your resulting files:

• 328hw8-3.php (and all additional files it uses, if any)

• 328hw8-3-1.xhtml and 328hw8-3-2.xhtml

• 328hw8-3.css.

Problem 4 - a PL/SQL stored function or procedure for your
"second" database

Consider your selected "second" database, the one you specified as part of Homework 3 - Problem 1.
As foretold in Homework 7, for this problem you are to decide on and implement either a PL/SQL
stored function or a PL/SQL stored procedure using your selected "second" database.
What might be a useful PL/SQL stored function or stored procedure for your "second" database? It
does not have to be complex, but it has to be potentially useful, and you will be calling it from the
application tier as part of a future homework problem.
For it to be feasible to call your PL/SQL stored function or stored procedure from a postback PHP
document, your PL/SQL stored function or stored procedure needs to meet these requirements:

• It needs to involve table(s) from your selected "second" database.

• It needs to expect at least one parameter (to be able to practice with a particular important security-
related feature we will be discussing).

• It needs to NOT depend on dbms_output.put_line calls (since their output cannot reach the

CS 328 - Homework 8 p. 9 of 10

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• Include rule(s) that will result in your form not taking up the entire width of the body, and being
centered within the body.

• Include rule(s) that will result in the submit button somehow being centered within the form.

• Add rule(s) using either CSS flexbox layout or CSS grid layout, your choice, to noticeably layout
the fieldset containing your checkboxes.

• Add additional CSS rules as desired to further attractively format elements of these documents.

• Make sure your resulting 328hw8-3.css validates as valid CSS.

Strict-validate the two parts generated by your 328hw8-3.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw8-3.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw8-3-1.xhtml, and put the URL of your 328hw8-3-1.xhtml into the
validator.

• Put your 328hw8-3.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw8-3-
2.xhtml, and put the URL of your 328hw8-3-2.xhtml into the validator.

Submit your resulting files:

• 328hw8-3.php (and all additional files it uses, if any)

• 328hw8-3-1.xhtml and 328hw8-3-2.xhtml

• 328hw8-3.css.

Problem 4 - a PL/SQL stored function or procedure for your
"second" database

Consider your selected "second" database, the one you specified as part of Homework 3 - Problem 1.
As foretold in Homework 7, for this problem you are to decide on and implement either a PL/SQL
stored function or a PL/SQL stored procedure using your selected "second" database.
What might be a useful PL/SQL stored function or stored procedure for your "second" database? It
does not have to be complex, but it has to be potentially useful, and you will be calling it from the
application tier as part of a future homework problem.
For it to be feasible to call your PL/SQL stored function or stored procedure from a postback PHP
document, your PL/SQL stored function or stored procedure needs to meet these requirements:

• It needs to involve table(s) from your selected "second" database.

• It needs to expect at least one parameter (to be able to practice with a particular important security-
related feature we will be discussing).

• It needs to NOT depend on dbms_output.put_line calls (since their output cannot reach the

https://snook.ca/technical/colour_contrast/colour.html

CS 328 - Homework 8 p. 10 of 10

application tier).

• It should be potentially useful to the audience for and/or to an application programmer developing
applications atop your selected "second" database.

It does not have to be complex, as long as it might be potentially useful. For example:

• A PL/SQL stored function might conveniently compute and return a count, sum, average, maximum,
or minimum computation based on a choice selected by an end-user.

• A PL/SQL stored procedure might insert, update, or delete into/from a table based on information
entered into a form by an end-user.

Create a SQL script in a file whose name includes second-db that meets the following
requirements:

• Include comment(s) containing at least your name, CS 328 - Homework 8, and the last-
modified date.

• Include a SQL*Plus spool command to spool the results of running this SQL script to a file whose
name includes second-db-out and whose suffix is .txt,

followed by a prompt command including your name.

• (Be sure to spool off at the end of this script, after your statements for creating and testing your
stored function or stored procedure.)

• Following the CS 328 style standards, design and implement a potentially-useful PL/SQL stored
function or stored procedure for your selected "second" database that meets the requirements listed
above.

• Follow that definition with at least two testing calls that demonstrate that it works.

– Be sure to print to the screen the expected results for each test, followed by its actual results.

– For a stored procedure, you also will likely need to include one or more select statements
showing that the desired side-effect(s) occurred.

– If your tests will modify your "second" database, precede the set-up for those tests with a
commit; statement and follow them with a rollback; statement.

Submit your files *second-db*.sql and *second-db-out*.txt.

(IMPORTANT NOTE:

• I or the grader should be able to run your latest-submitted *design.sql and *populate.sql,
and then your *second-db*.sql, successfully.

– SO: IF you make any changes to your *design.sql or *populate.sql,

then make sure you ALSO:

– submit updated copies of your *design.sql or *populate.sql (using a homework
number of 33)

– along with your *second-db*.sql and *second-db-out*.txt (submitted using a
homework number of 8)!

CS 328 - Homework 8 p. 10 of 10

application tier).

• It should be potentially useful to the audience for and/or to an application programmer developing
applications atop your selected "second" database.

It does not have to be complex, as long as it might be potentially useful. For example:

• A PL/SQL stored function might conveniently compute and return a count, sum, average, maximum,
or minimum computation based on a choice selected by an end-user.

• A PL/SQL stored procedure might insert, update, or delete into/from a table based on information
entered into a form by an end-user.

Create a SQL script in a file whose name includes second-db that meets the following
requirements:

• Include comment(s) containing at least your name, CS 328 - Homework 8, and the last-
modified date.

• Include a SQL*Plus spool command to spool the results of running this SQL script to a file whose
name includes second-db-out and whose suffix is .txt,

followed by a prompt command including your name.

• (Be sure to spool off at the end of this script, after your statements for creating and testing your
stored function or stored procedure.)

• Following the CS 328 style standards, design and implement a potentially-useful PL/SQL stored
function or stored procedure for your selected "second" database that meets the requirements listed
above.

• Follow that definition with at least two testing calls that demonstrate that it works.

– Be sure to print to the screen the expected results for each test, followed by its actual results.

– For a stored procedure, you also will likely need to include one or more select statements
showing that the desired side-effect(s) occurred.

– If your tests will modify your "second" database, precede the set-up for those tests with a
commit; statement and follow them with a rollback; statement.

Submit your files *second-db*.sql and *second-db-out*.txt.

(IMPORTANT NOTE:

• I or the grader should be able to run your latest-submitted *design.sql and *populate.sql,
and then your *second-db*.sql, successfully.

– SO: IF you make any changes to your *design.sql or *populate.sql,

then make sure you ALSO:

– submit updated copies of your *design.sql or *populate.sql (using a homework
number of 33)

– along with your *second-db*.sql and *second-db-out*.txt (submitted using a
homework number of 8)!

	Deadline
	Purpose
	How to submit
	Important notes
	Problem 1
	FUN FACT: HTML checkbox elements and PHP, Part 1
	What you should already know about checkbox elements:

	Problem 2
	FUN FACT: HTML checkbox elements and PHP, Part 2
	Demonstrated in zyBooks Chapter 5 - Section 5.11 - Participation Activity 5.11.7:

	Problem 3
	Problem 4 - a PL/SQL stored function or procedure for your "second" database

