
CS 328 - Homework 9 p. 1 of 8

CS 328 - Homework 9
Deadline
11:59 pm on Friday, April 11, 2025

Purpose
To get more practice writing PHP documents that send requests to Oracle using OCI, to read and think
about SQL injection, and to practice building a dynamic form widget and using bind variables to help
thwart SQL injection.

How to submit
Each time you wish to submit your work-so-far, submit your files using ~st10/328submit on nrs-
projects, with a homework number of 9.

Important notes
• NOTE: you are welcome to use require_once/include_once/require/include in

your PHP documents!

– BUT when you use them in homework problems' documents, be sure to also SUBMIT copies of
all files that you are requiring/including!

• DO NOT USE ANY PHP FRAMEWORKS FOR THESE PROBLEMS -- one of this course's
purposes is to provide you with practice with "plain" PHP.

• Remember: You are required to use normalize.css for all of your web pages for CS 328, and to
add link elements for additional CSS external stylesheets after this (but still within the head
element).
EXCEPT for normalize.css, DO NOT USE ANY CSS FRAMEWORKS or PREDEFINED
LIBRARIES for this course (unless you get prior, explicit permission). One of this course's
purposes is to provide you with some practice with the basics of "plain" CSS, so you can better make
use of frameworks and predefined libraries later.

• Remember: there are now CS 328 PHP Coding Standards so far posted on the public course web
site, under References -- you are also expected to follow these for all course PHP documents.

• You are expected to follow all course coding standards posted on the public course web site; course
documents (including documents generated by your PHP files) are also expected to validate as
"strict"-style HTML, and valid CSS.

• Make sure that you have executed the scripts create-bks.sql and pop-bks.sql, and that the
bookstore tables are successfully created and populated.

CS 328 - Homework 9 p. 1 of 8

CS 328 - Homework 9
Deadline
11:59 pm on Friday, April 11, 2025

Purpose
To get more practice writing PHP documents that send requests to Oracle using OCI, to read and think
about SQL injection, and to practice building a dynamic form widget and using bind variables to help
thwart SQL injection.

How to submit
Each time you wish to submit your work-so-far, submit your files using ~st10/328submit on nrs-
projects, with a homework number of 9.

Important notes
• NOTE: you are welcome to use require_once/include_once/require/include in

your PHP documents!

– BUT when you use them in homework problems' documents, be sure to also SUBMIT copies of
all files that you are requiring/including!

• DO NOT USE ANY PHP FRAMEWORKS FOR THESE PROBLEMS -- one of this course's
purposes is to provide you with practice with "plain" PHP.

• Remember: You are required to use normalize.css for all of your web pages for CS 328, and to
add link elements for additional CSS external stylesheets after this (but still within the head
element).
EXCEPT for normalize.css, DO NOT USE ANY CSS FRAMEWORKS or PREDEFINED
LIBRARIES for this course (unless you get prior, explicit permission). One of this course's
purposes is to provide you with some practice with the basics of "plain" CSS, so you can better make
use of frameworks and predefined libraries later.

• Remember: there are now CS 328 PHP Coding Standards so far posted on the public course web
site, under References -- you are also expected to follow these for all course PHP documents.

• You are expected to follow all course coding standards posted on the public course web site; course
documents (including documents generated by your PHP files) are also expected to validate as
"strict"-style HTML, and valid CSS.

• Make sure that you have executed the scripts create-bks.sql and pop-bks.sql, and that the
bookstore tables are successfully created and populated.

CS 328 - Homework 9 p. 2 of 8

Problem 1 - more practice with PHP and OCI
Putting connection details into a helper function
Consider those steps we used to set up the needed arguments for, and then call, oci_connect in
try-oracle.php: (I am pasting in the "short form" original of these, rather than the version with
comments trying to explain each from try-oracle-explained.php):
 $os_username = substr($_SERVER["CONTEXT_PREFIX"], 2);

 $ora_php_username = "{$os_username}_php";

 $conn_username = "{$ora_php_username}[{$os_username}]";

 $ora_php_password =
 trim(file_get_contents("/home/{$os_username}/.oraauth"));

 $conn = oci_connect(username: $conn_username,
 password: $ora_php_password,
 connection_string: null,
 encoding: "AL32UTF8",
 session_mode: OCI_DEFAULT);

It might be nice to gather these in an easier-to-reuse function:
<?php
 /*-----
 function: hum_conn_no_login: void -> connection
 purpose: expects nothing,

 has the side-effect of trying to connect to
 Humboldt's Oracle student database based on where
 the PHP file resides,

 and, if successful, returns the resulting connection
 object,

 but, if NOT successful, ENDS the document and exits the
 current PHP document...! (yes, it can do that...!)

 uses: 328footer-plus-end.html
 last modified: 2025-04-06
 -----*/

 function hum_conn_no_login()
 {
 // get part of the username from where this is installed

 $os_username = substr($_SERVER["CONTEXT_PREFIX"], 2);

CS 328 - Homework 9 p. 2 of 8

Problem 1 - more practice with PHP and OCI
Putting connection details into a helper function
Consider those steps we used to set up the needed arguments for, and then call, oci_connect in
try-oracle.php: (I am pasting in the "short form" original of these, rather than the version with
comments trying to explain each from try-oracle-explained.php):
 $os_username = substr($_SERVER["CONTEXT_PREFIX"], 2);

 $ora_php_username = "{$os_username}_php";

 $conn_username = "{$ora_php_username}[{$os_username}]";

 $ora_php_password =
 trim(file_get_contents("/home/{$os_username}/.oraauth"));

 $conn = oci_connect(username: $conn_username,
 password: $ora_php_password,
 connection_string: null,
 encoding: "AL32UTF8",
 session_mode: OCI_DEFAULT);

It might be nice to gather these in an easier-to-reuse function:
<?php
 /*-----
 function: hum_conn_no_login: void -> connection
 purpose: expects nothing,

 has the side-effect of trying to connect to
 Humboldt's Oracle student database based on where
 the PHP file resides,

 and, if successful, returns the resulting connection
 object,

 but, if NOT successful, ENDS the document and exits the
 current PHP document...! (yes, it can do that...!)

 uses: 328footer-plus-end.html
 last modified: 2025-04-06
 -----*/

 function hum_conn_no_login()
 {
 // get part of the username from where this is installed

 $os_username = substr($_SERVER["CONTEXT_PREFIX"], 2);

CS 328 - Homework 9 p. 3 of 8

 // but the Oracle account you can log into using OCI is your
 // username plus _php

 $ora_php_username = "{$os_username}_php";

 // but, to ask to use blah_php's password to log in as blah,
 // we need to express it in the form blah_php[blah]

 $conn_username = "{$ora_php_username}[{$os_username}]";

 // grab the password from this user's .oraauth

 $ora_php_password =
 trim(file_get_contents("/home/{$os_username}/.oraauth"));

 // now: oci_connect expects:
 // a username,
 // a password,
 // a connection string (can be null in this particular
 // approach, so PHP can build it from
 // environment variables),
 // the desired character encoding (we'll use "AL32UTF8"),
 // the desired session mode (we'll use the default, the
 // PHP constant OCI_DEFAULT)

 $connectn = oci_connect($conn_username, $ora_php_password,
 null, "AL32UTF8", OCI_DEFAULT);

 // complain and exit at least somewhat gracefully if
 // oci_connect fails to make a connection

 if (! $connectn)
 {
 ?>
 <p> Could not log into Oracle, sorry! </p>
 <?php
 require_once("328footer-plus-end.html");

 // exit this PHP now -- this is reasonable
 // when you have hit an error and there is NO
 // point in going forward

 exit;
 }

 // if reach here, I connected!

CS 328 - Homework 9 p. 3 of 8

 // but the Oracle account you can log into using OCI is your
 // username plus _php

 $ora_php_username = "{$os_username}_php";

 // but, to ask to use blah_php's password to log in as blah,
 // we need to express it in the form blah_php[blah]

 $conn_username = "{$ora_php_username}[{$os_username}]";

 // grab the password from this user's .oraauth

 $ora_php_password =
 trim(file_get_contents("/home/{$os_username}/.oraauth"));

 // now: oci_connect expects:
 // a username,
 // a password,
 // a connection string (can be null in this particular
 // approach, so PHP can build it from
 // environment variables),
 // the desired character encoding (we'll use "AL32UTF8"),
 // the desired session mode (we'll use the default, the
 // PHP constant OCI_DEFAULT)

 $connectn = oci_connect($conn_username, $ora_php_password,
 null, "AL32UTF8", OCI_DEFAULT);

 // complain and exit at least somewhat gracefully if
 // oci_connect fails to make a connection

 if (! $connectn)
 {
 ?>
 <p> Could not log into Oracle, sorry! </p>
 <?php
 require_once("328footer-plus-end.html");

 // exit this PHP now -- this is reasonable
 // when you have hit an error and there is NO
 // point in going forward

 exit;
 }

 // if reach here, I connected!

CS 328 - Homework 9 p. 4 of 8

 return $connectn;
 }
?>

The above function has now also been posted, in a file named hum_conn_no_login.php, along
with this homework. (So is the snippet-of-ending-HTML it uses,
328footer-plus-end.html.) For convenience, you can also make copies of these to your
current nrs-projects working directory with this command:

cp ~st10/hum_conn_no_login.php . # remember the space and period!

cp ~st10/328footer-plus-end.html .

Posted example using the above function
Finally, there is an example, empl-ex.php, using hum_conn_no_login and
328footer-plus-end.html along the way to querying the empl database, also posted along
with this homework handout.
Like the Week 10 Lab Exercise, it happens to involve a query that results in multiple rows, and it also
happens to build an HTML table element to tastefully display those rows.

Homework 9 - Problem 1 requirements
Consider the bookstore database, and think of a query that:

• projects at least 3 different columns, and

• selects at least 3 different rows.

Using the posted html-template.html as the initial basis, create a PHP document
328hw9-1.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element: if you would like, include PHP tag(s) with statement(s):

– to enable PHP error reporting

– to include the definition of function hum_conn_no_login, from your local copy of file
hum_conn_no_login.php

• Within the head element, after the link element specifying that this document is being styled by
normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw9-1.css that you are about to create for
this problem.

– Do not include any inline or internal CSS rules in your 328hw9-1.php.

CS 328 - Homework 9 p. 4 of 8

 return $connectn;
 }
?>

The above function has now also been posted, in a file named hum_conn_no_login.php, along
with this homework. (So is the snippet-of-ending-HTML it uses,
328footer-plus-end.html.) For convenience, you can also make copies of these to your
current nrs-projects working directory with this command:

cp ~st10/hum_conn_no_login.php . # remember the space and period!

cp ~st10/328footer-plus-end.html .

Posted example using the above function
Finally, there is an example, empl-ex.php, using hum_conn_no_login and
328footer-plus-end.html along the way to querying the empl database, also posted along
with this homework handout.
Like the Week 10 Lab Exercise, it happens to involve a query that results in multiple rows, and it also
happens to build an HTML table element to tastefully display those rows.

Homework 9 - Problem 1 requirements
Consider the bookstore database, and think of a query that:

• projects at least 3 different columns, and

• selects at least 3 different rows.

Using the posted html-template.html as the initial basis, create a PHP document
328hw9-1.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element: if you would like, include PHP tag(s) with statement(s):

– to enable PHP error reporting

– to include the definition of function hum_conn_no_login, from your local copy of file
hum_conn_no_login.php

• Within the head element, after the link element specifying that this document is being styled by
normalize.css, add a second link element following course style standards specifying that this
document will then be further styled using a file 328hw9-1.css that you are about to create for
this problem.

– Do not include any inline or internal CSS rules in your 328hw9-1.php.

CS 328 - Homework 9 p. 5 of 8

• Within the body element, include an h1 element that somehow includes "your" bookstore's name
(from previous homeworks' about-bks.html).

• Somewhere in the body element, include an element that visibly includes your name.

– (Just in case you'd like to try out using 328footer-plus-end.html for this problem, I am
not requiring that your name be in the footer element for this problem.)

• Query at least one of the tables created by create-bks.sql,

– such that you project at least 3 different columns, and

– such that you select at least different 3 rows.

• Display the queried results using a table element.

• Include an a/anchor element (hypertext link) with appropriate text that links back to your 328hw9-
1.php.

Your 328hw9-1.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• Include at least one rule adding an attractive border to the table, td, and th elements.

– You also should make appropriate use of the border-collapse property to prevent a
doubled-border in the resulting displayed table.

• Add additional CSS rules as desired to further attractively format elements of this document.

• Make sure your resulting 328hw9-1.css validates as valid CSS.

Strict-validate your 328hw9-1.php's result by running it from a browser, viewing its source, copying
and pasting that source into a file named 328hw9-1.xhtml, and put the URL of your
328hw9-1.xhtml into the validator.

Submit your resulting files:

• 328hw9-1.php (and all additional files it uses, if any),

• 328hw9-1.xhtml, and

• 328hw9-1.css

Problem 2 - thinking about SQL injection
SQL injection is when someone tries to "inject" additional SQL clauses into a dynamic SQL statement
-- one built at run time, especially one built based on user input.
READ OVER the handout "Basics of Oracle/PHP Bind Variables" that is posted along with this
homework handout -- it talks a bit more about SQL injection, and describes one of the important tools
for fighting it, bind variables.
To add more depth to your knowledge of SQL injection, consider the two articles:

CS 328 - Homework 9 p. 5 of 8

• Within the body element, include an h1 element that somehow includes "your" bookstore's name
(from previous homeworks' about-bks.html).

• Somewhere in the body element, include an element that visibly includes your name.

– (Just in case you'd like to try out using 328footer-plus-end.html for this problem, I am
not requiring that your name be in the footer element for this problem.)

• Query at least one of the tables created by create-bks.sql,

– such that you project at least 3 different columns, and

– such that you select at least different 3 rows.

• Display the queried results using a table element.

• Include an a/anchor element (hypertext link) with appropriate text that links back to your 328hw9-
1.php.

Your 328hw9-1.css should meet the following requirements:

• Include a comment including at least its file name, your name, and the last-modified date.

• If you change any of the default foreground and background colors, make sure that, for any text atop
a background, the contrast between their colors is at least WCAG 2 AA Compliant based on the
tester at: https://snook.ca/technical/colour_contrast/colour.html.

• Include at least one rule adding an attractive border to the table, td, and th elements.

– You also should make appropriate use of the border-collapse property to prevent a
doubled-border in the resulting displayed table.

• Add additional CSS rules as desired to further attractively format elements of this document.

• Make sure your resulting 328hw9-1.css validates as valid CSS.

Strict-validate your 328hw9-1.php's result by running it from a browser, viewing its source, copying
and pasting that source into a file named 328hw9-1.xhtml, and put the URL of your
328hw9-1.xhtml into the validator.

Submit your resulting files:

• 328hw9-1.php (and all additional files it uses, if any),

• 328hw9-1.xhtml, and

• 328hw9-1.css

Problem 2 - thinking about SQL injection
SQL injection is when someone tries to "inject" additional SQL clauses into a dynamic SQL statement
-- one built at run time, especially one built based on user input.
READ OVER the handout "Basics of Oracle/PHP Bind Variables" that is posted along with this
homework handout -- it talks a bit more about SQL injection, and describes one of the important tools
for fighting it, bind variables.
To add more depth to your knowledge of SQL injection, consider the two articles:

https://snook.ca/technical/colour_contrast/colour.html

CS 328 - Homework 9 p. 6 of 8

• "SQL Injection Attacks by Example" and

• "How security flaws work: SQL injection"

...that also are posted along with this homework handout.
Read these articles; pay special attention to the "Mitigations" section near the end of article (1), and
note that an example of article (2)'s prepared statements are statements using OCI's bind variables.
Then, in a plain-text file 328hw9-2.txt:

• include your name

• list at least THREE important "take-aways" from these articles, and for each, explain WHY you
chose it. (So, there are SIX PARTS to this -- your three selections, AND WHY you chose each.)

Submit your file 328hw9-2.txt.

Problem 3 - practice building a dynamic select/drop-down
widget and using bind variables

Remember that, posted along with this homework handout, there is a handout: "Basics of Oracle/PHP
Bind Variables".
For this problem, you are going to build a PHP postback document that either:

• creates a form with a select drop-down widget dynamically built based on a query's results, or

• crafts a response to that form when it is submitted with the help of a dynamic select statement that
uses bind variables rather than concatenation (to help thwart SQL injection).

Consider:
The posted example empl-ex.php includes an example of how PHP can be used to build a table
element whose contents are the rows resulting from a select statement.

One could, similarly, use PHP to build a select/drop-down element whose option elements are
based on the rows resulting from a select statement.

Then, one could more-safely request information based on the user's selected option from that
submitted form with the help of bind variables.
Now, finally, it is time to replace the hand-written select/drop-down element in
bks-isbn-choice.html with a dynamically-generated select/drop-down element!

Decide on at least two pieces of information a user might like to ask about a title available at your
bookstore -- as just a few of the possible examples:

• What is the price and currently quantity of a particular title?

• Who is the author and publisher of a particular title?

• Who is the author, and what is the price, of a particular title?

CS 328 - Homework 9 p. 6 of 8

• "SQL Injection Attacks by Example" and

• "How security flaws work: SQL injection"

...that also are posted along with this homework handout.
Read these articles; pay special attention to the "Mitigations" section near the end of article (1), and
note that an example of article (2)'s prepared statements are statements using OCI's bind variables.
Then, in a plain-text file 328hw9-2.txt:

• include your name

• list at least THREE important "take-aways" from these articles, and for each, explain WHY you
chose it. (So, there are SIX PARTS to this -- your three selections, AND WHY you chose each.)

Submit your file 328hw9-2.txt.

Problem 3 - practice building a dynamic select/drop-down
widget and using bind variables

Remember that, posted along with this homework handout, there is a handout: "Basics of Oracle/PHP
Bind Variables".
For this problem, you are going to build a PHP postback document that either:

• creates a form with a select drop-down widget dynamically built based on a query's results, or

• crafts a response to that form when it is submitted with the help of a dynamic select statement that
uses bind variables rather than concatenation (to help thwart SQL injection).

Consider:
The posted example empl-ex.php includes an example of how PHP can be used to build a table
element whose contents are the rows resulting from a select statement.

One could, similarly, use PHP to build a select/drop-down element whose option elements are
based on the rows resulting from a select statement.

Then, one could more-safely request information based on the user's selected option from that
submitted form with the help of bind variables.
Now, finally, it is time to replace the hand-written select/drop-down element in
bks-isbn-choice.html with a dynamically-generated select/drop-down element!

Decide on at least two pieces of information a user might like to ask about a title available at your
bookstore -- as just a few of the possible examples:

• What is the price and currently quantity of a particular title?

• Who is the author and publisher of a particular title?

• Who is the author, and what is the price, of a particular title?

CS 328 - Homework 9 p. 7 of 8

Homework 9 - Problem 3 requirements
Make a COPY of your file bks.css from Homework 7 - Problem 5 in a DIFFERENT directory on
nrs-projects (so you will not interfere with your earlier homework's files!).
Using the posted html-template.html as the initial basis, create a PHP document
328hw9-3.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, add a second link element so that this will be further styled using
Homework 9's version of bks.css.

– Do not include any inline or internal CSS rules in your 328hw9-3.php.

• Within the body element, include an h1 element with appropriate content that somehow includes
"your" bookstore's name (from previous homeworks' about-bks.html).

• Somewhere in the body element, include an element that visibly includes your name.

– (Just in case you'd like to try out using 328footer-plus-end.html for this problem, I am
not requiring that your name be in the footer element for this problem.)

• Your 328hw9-3.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw9-3.php should be a variation of your form
from Homework 7 - Problem 5's bks-isbn-choice.html, meeting the following requirements:

– its action attribute should have as its action:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

– instead of being hard-coded, the option elements of ISBN-title pairs in its select/drop-down
must be dynamically built based on querying for the current ISBNs and titles of books in the
bookstore databases' title table.

– AS in Homework 4 - Problem 4:

– Set up this select's option elements so that the user sees, in the select/drop-down
box, ISBN-title name pairs, but...

– ...when a particular option is selected, the value in the resulting name=value pair for this
option is JUST the ISBN for the user's choice.

– (for example, if the user selects an option that is displayed as:
9780131103627 - The C Programming Language

... the form will submit a name=value pair whose value is just 9780131103627)

– ASK ME if you are not sure what I am asking for here.

CS 328 - Homework 9 p. 7 of 8

Homework 9 - Problem 3 requirements
Make a COPY of your file bks.css from Homework 7 - Problem 5 in a DIFFERENT directory on
nrs-projects (so you will not interfere with your earlier homework's files!).
Using the posted html-template.html as the initial basis, create a PHP document
328hw9-3.php that meets the following requirements:

• Include your name and last modified date in its opening comment, AND the URL this can be run
from.

– (You will lose some credit if this URL does not work when I or the grader paste it into a
browser!)

• Within the head element, edit the title element, giving it appropriate content.

• Within the head element, add a second link element so that this will be further styled using
Homework 9's version of bks.css.

– Do not include any inline or internal CSS rules in your 328hw9-3.php.

• Within the body element, include an h1 element with appropriate content that somehow includes
"your" bookstore's name (from previous homeworks' about-bks.html).

• Somewhere in the body element, include an element that visibly includes your name.

– (Just in case you'd like to try out using 328footer-plus-end.html for this problem, I am
not requiring that your name be in the footer element for this problem.)

• Your 328hw9-3.php's logic should be designed so that its response includes either a form, or a
response to its form -- its response should never include both.

• The initial form element generated by your 328hw9-3.php should be a variation of your form
from Homework 7 - Problem 5's bks-isbn-choice.html, meeting the following requirements:

– its action attribute should have as its action:
"<?= htmlentities($_SERVER["PHP_SELF"], ENT_QUOTES) ?>"

– instead of being hard-coded, the option elements of ISBN-title pairs in its select/drop-down
must be dynamically built based on querying for the current ISBNs and titles of books in the
bookstore databases' title table.

– AS in Homework 4 - Problem 4:

– Set up this select's option elements so that the user sees, in the select/drop-down
box, ISBN-title name pairs, but...

– ...when a particular option is selected, the value in the resulting name=value pair for this
option is JUST the ISBN for the user's choice.

– (for example, if the user selects an option that is displayed as:
9780131103627 - The C Programming Language

... the form will submit a name=value pair whose value is just 9780131103627)

– ASK ME if you are not sure what I am asking for here.

CS 328 - Homework 9 p. 8 of 8

• When this form is submitted, the response generated by your 328hw9-3.php should include the
following:

– Appropriately sanitize each piece of information submitted by this form.

– Build a dynamic select statement that projects at least two attributes, and uses at least one
bind variable (instead of concatenation!) in its where clause based on the user's selection from
the form's select/drop-down widget.

– Add the select's results to the response in a pleasing, strict-HTML-style way.

– Note that you will lose substantial credit if you use concatenation to include any submitted
information within your select statement string -- you are required to use a bind variable
instead!

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw9-3.php.

Your Homework 9 version of bks.css should meet the following requirements:

• Actually, it is fine if you decide that you do not need to make any changes to this, as long as it meets
Homework 7 - Problem 5's requirements.

• But, whether it is changed or not, make sure the resulting bks.css still validates as valid CSS.

Strict-validate the two parts generated by your 328hw9-3.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw9-3.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw9-3-1.xhtml, and put the URL of your 328hw9-3-1.xhtml into the
validator.

• Put your 328hw9-3.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw9-3-
2.xhtml, and put the URL of your 328hw9-3-2.xhtml into the validator.

Submit your resulting files:

• 328hw9-3.php (and all additional files it uses, if any)

• 328hw9-3-1.xhtml and 328hw9-3-2.xhtml

• bks.css.

CS 328 - Homework 9 p. 8 of 8

• When this form is submitted, the response generated by your 328hw9-3.php should include the
following:

– Appropriately sanitize each piece of information submitted by this form.

– Build a dynamic select statement that projects at least two attributes, and uses at least one
bind variable (instead of concatenation!) in its where clause based on the user's selection from
the form's select/drop-down widget.

– Add the select's results to the response in a pleasing, strict-HTML-style way.

– Note that you will lose substantial credit if you use concatenation to include any submitted
information within your select statement string -- you are required to use a bind variable
instead!

– The response should ALSO include an a/anchor element (hypertext link) with appropriate text
that links back to your 328hw9-3.php.

Your Homework 9 version of bks.css should meet the following requirements:

• Actually, it is fine if you decide that you do not need to make any changes to this, as long as it meets
Homework 7 - Problem 5's requirements.

• But, whether it is changed or not, make sure the resulting bks.css still validates as valid CSS.

Strict-validate the two parts generated by your 328hw9-3.php as you did for the Week 9 Lab
Exercise's 328lab09.php:

• Put your 328hw9-3.php's URL in a browser and view its source, copy and paste that source into
a file named 328hw9-3-1.xhtml, and put the URL of your 328hw9-3-1.xhtml into the
validator.

• Put your 328hw9-3.php's URL in a browser and fill out and submit its form, then view that
response's source, and copy and paste that response's source into a file named 328hw9-3-
2.xhtml, and put the URL of your 328hw9-3-2.xhtml into the validator.

Submit your resulting files:

• 328hw9-3.php (and all additional files it uses, if any)

• 328hw9-3-1.xhtml and 328hw9-3-2.xhtml

• bks.css.

	Deadline
	Purpose
	How to submit
	Important notes
	Problem 1 - more practice with PHP and OCI
	Putting connection details into a helper function
	Posted example using the above function
	Homework 9 - Problem 1 requirements

	Problem 2 - thinking about SQL injection
	Problem 3 - practice building a dynamic select/drop-down widget and using bind variables
	Consider:
	Homework 9 - Problem 3 requirements

