
CS 328 - Week 4 Lab Exercise p. 1 of 10

CS 328 - Week 4 Lab Exercise - 2025-02-13/14
Deadline
Due by the end of lab.

Purpose
To practice with some more HTML form widgets, and to practice writing and running a PL/SQL
subroutine.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number

of 84.

• Important note: It is quite likely that your SQL files will be in a different directory than your HTML
files, especially for the navigator. That's fine, and preferable!

– Just remember that you need to run ~st10/328submit from EACH directory with files to be
submitted for this lab exercise.

Requirements
• You are required to work in pairs for this lab exercise.

– This means two people working at ONE computer, one typing ("driving"), one saying what to type
("navigating"),

while BOTH are looking at the shared computer screen and discussing concepts/issues along the
way.

• Make sure BOTH of your names appear in each file submitted.

• When you are done, before you leave lab, BOTH of you should submit appropriate versions of these
files using ~st10/328submit on nrs-projects, with a lab number of 84.

• For this lab exercise's problems, the only CSS permitted is the external CSS normalize.css included
in html-template.html.

Set-up for HTML Problems 1-4

Consider before you start:
You can approach today's lab exercise Problems 1-4 in a number of different ways.

You are going to be building a form, trying out several more kinds of form widgets, and seeing what
name=value pairs are submitted by those form widgets when a form containing them is submitted.

More-Scattershot approach:
You can just have different "themes" for each example form widget you are practicing with in this
problem.

More-Thematic approach:
You can decide on an overall "theme" for your form at the beginning, and add form widgets appropriate
for that "theme" for each example form widget you are practicing with in this lab.

CS 328 - Week 4 Lab Exercise p. 1 of 10

CS 328 - Week 4 Lab Exercise - 2025-02-13/14
Deadline
Due by the end of lab.

Purpose
To practice with some more HTML form widgets, and to practice writing and running a PL/SQL
subroutine.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number

of 84.

• Important note: It is quite likely that your SQL files will be in a different directory than your HTML
files, especially for the navigator. That's fine, and preferable!

– Just remember that you need to run ~st10/328submit from EACH directory with files to be
submitted for this lab exercise.

Requirements
• You are required to work in pairs for this lab exercise.

– This means two people working at ONE computer, one typing ("driving"), one saying what to type
("navigating"),

while BOTH are looking at the shared computer screen and discussing concepts/issues along the
way.

• Make sure BOTH of your names appear in each file submitted.

• When you are done, before you leave lab, BOTH of you should submit appropriate versions of these
files using ~st10/328submit on nrs-projects, with a lab number of 84.

• For this lab exercise's problems, the only CSS permitted is the external CSS normalize.css included
in html-template.html.

Set-up for HTML Problems 1-4

Consider before you start:
You can approach today's lab exercise Problems 1-4 in a number of different ways.

You are going to be building a form, trying out several more kinds of form widgets, and seeing what
name=value pairs are submitted by those form widgets when a form containing them is submitted.

More-Scattershot approach:
You can just have different "themes" for each example form widget you are practicing with in this
problem.

More-Thematic approach:
You can decide on an overall "theme" for your form at the beginning, and add form widgets appropriate
for that "theme" for each example form widget you are practicing with in this lab.

CS 328 - Week 4 Lab Exercise p. 2 of 10

...and there are certainly possibilities between these two extremes, also.

If you are interested in being more thematic, note that the elements you will be practicing with are good
for the following situations:

• asking for EXACTLY one choice from a relatively-small number of exact choices (do you want
your sandwich on white, wheat, or gluten-free bread?)

• asking for EXACTLY one choice from a possibly-larger-number of exact choices (choose from
exactly one of 7-10 sides to be included with your sandwich)

• asking for possibly-multiple lines of text (enter your opinion of your sandwich order)

You might want to consider (briefly) before starting your form, then: what is a setting where you might
want to ask users for information such as the above?

Problem 1 - start a form
Starting from the html-template.html posted on the course public site and along with this lab exercise
handout, create a strict-style HTML document that meets the class style standards as well as the following
requirements:

• Include lab4 somewhere in its file name, and give its file name the suffix .html .

– Reminder: assuming the navigator is already in their desired public_html subdirectory for today's
lab, this works for starting off this file:

cp ~st10/html-template.html your-lab4-file-name.html

• Fill in the opening comment block as specified, putting in your names, the last modified date, and the
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a browser!)

• Give the head element's title element appropriate descriptive content.

• Within the body element, add an appropriate h1 element indicating this document is for the
CS 328 Week 4 Lab Exercise.

• Within the footer element, add a p element whose content includes your last names.

Add the following after the h1 element you added above:

• START a form element.

– set its action attribute to a "real" URL of your choice (because we haven't gotten to writing an
actual application program to handle this form yet)

– set its method attribute to "get"

• In the content of this form element, add:

– a top-level fieldset element that, to start, contains:

– an appropriate legend element of your choice

– a submit button (an input element with a type attribute whose value is "submit")

• Remember that, for this lab exercise, you may not use CSS to format or layout this form, although you
can tastefully use br void elements, p elements, or div elements if you wish.

CS 328 - Week 4 Lab Exercise p. 2 of 10

...and there are certainly possibilities between these two extremes, also.

If you are interested in being more thematic, note that the elements you will be practicing with are good
for the following situations:

• asking for EXACTLY one choice from a relatively-small number of exact choices (do you want
your sandwich on white, wheat, or gluten-free bread?)

• asking for EXACTLY one choice from a possibly-larger-number of exact choices (choose from
exactly one of 7-10 sides to be included with your sandwich)

• asking for possibly-multiple lines of text (enter your opinion of your sandwich order)

You might want to consider (briefly) before starting your form, then: what is a setting where you might
want to ask users for information such as the above?

Problem 1 - start a form
Starting from the html-template.html posted on the course public site and along with this lab exercise
handout, create a strict-style HTML document that meets the class style standards as well as the following
requirements:

• Include lab4 somewhere in its file name, and give its file name the suffix .html .

– Reminder: assuming the navigator is already in their desired public_html subdirectory for today's
lab, this works for starting off this file:

cp ~st10/html-template.html your-lab4-file-name.html

• Fill in the opening comment block as specified, putting in your names, the last modified date, and the
URL that can be used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a browser!)

• Give the head element's title element appropriate descriptive content.

• Within the body element, add an appropriate h1 element indicating this document is for the
CS 328 Week 4 Lab Exercise.

• Within the footer element, add a p element whose content includes your last names.

Add the following after the h1 element you added above:

• START a form element.

– set its action attribute to a "real" URL of your choice (because we haven't gotten to writing an
actual application program to handle this form yet)

– set its method attribute to "get"

• In the content of this form element, add:

– a top-level fieldset element that, to start, contains:

– an appropriate legend element of your choice

– a submit button (an input element with a type attribute whose value is "submit")

• Remember that, for this lab exercise, you may not use CSS to format or layout this form, although you
can tastefully use br void elements, p elements, or div elements if you wish.

CS 328 - Week 4 Lab Exercise p. 3 of 10

validate your document-so-far
Before you go on...

• Create an .xhtml copy of your document-so-far:

cp your-lab4-file-name.html your-lab4-file-name.xhtml

• Go to either https://validator.w3.org/nu or https://html5.validator.nu

and paste in the absolute URL of the your-lab4-file-name.xhtml version of your file

and click the "Validate" button.

– Correct any issues that are shown before going on to Problem 2.

Problem 2 - add a fieldset with logically-grouped radio buttons
Reminder - Radio buttons
• Radio buttons are another type of input element;

• This can be a good choice when the user is to select EXACTLY ONE of a "SMALLISH" number of
specific options.

– Selecting one of these causes the previous selection to be UN-selected.

• IMPORTANT TO KNOW:

– An input element with type="radio" is a radio button.

– Browsers typically format a radio button as a small circle -- clicking it fills in that circle and "un-
fills" the circle for the previously-selected radio button in its logical group.

– Each should have a name attribute. To logically group those radio buttons representing the options
for a single choice, give each the SAME value for its name attribute.

– [One way to think about this: all together, the radio buttons with the same value for their name
attribute represent a "single" logical element.]

– Each should have a value attribute.

– When the form is submitted, one name=value pair will be sent for the whole logical group of
radio buttons;

– the name will be the value of that logical group's name attribute,

– and the value will be the value attribute's value for the currently-selected radio button in that
logical group of radio buttons.

– Add attribute checked="checked" to the SINGLE radio button you'd like to be INITIALLY
selected when the form is created.

– What if you don't? Then, when the form is submitted, if the user never clicked one of the radio
buttons, NO name=value pair will be submitted for that logical set of radio buttons, which may
be confusing on the application tier when handling this form.

– Add a logically-related label element along with each radio button instance to logically associate
that radio button's label text with that radio button.

Problem 2 requirements:

CS 328 - Week 4 Lab Exercise p. 3 of 10

validate your document-so-far
Before you go on...

• Create an .xhtml copy of your document-so-far:

cp your-lab4-file-name.html your-lab4-file-name.xhtml

• Go to either https://validator.w3.org/nu or https://html5.validator.nu

and paste in the absolute URL of the your-lab4-file-name.xhtml version of your file

and click the "Validate" button.

– Correct any issues that are shown before going on to Problem 2.

Problem 2 - add a fieldset with logically-grouped radio buttons
Reminder - Radio buttons
• Radio buttons are another type of input element;

• This can be a good choice when the user is to select EXACTLY ONE of a "SMALLISH" number of
specific options.

– Selecting one of these causes the previous selection to be UN-selected.

• IMPORTANT TO KNOW:

– An input element with type="radio" is a radio button.

– Browsers typically format a radio button as a small circle -- clicking it fills in that circle and "un-
fills" the circle for the previously-selected radio button in its logical group.

– Each should have a name attribute. To logically group those radio buttons representing the options
for a single choice, give each the SAME value for its name attribute.

– [One way to think about this: all together, the radio buttons with the same value for their name
attribute represent a "single" logical element.]

– Each should have a value attribute.

– When the form is submitted, one name=value pair will be sent for the whole logical group of
radio buttons;

– the name will be the value of that logical group's name attribute,

– and the value will be the value attribute's value for the currently-selected radio button in that
logical group of radio buttons.

– Add attribute checked="checked" to the SINGLE radio button you'd like to be INITIALLY
selected when the form is created.

– What if you don't? Then, when the form is submitted, if the user never clicked one of the radio
buttons, NO name=value pair will be submitted for that logical set of radio buttons, which may
be confusing on the application tier when handling this form.

– Add a logically-related label element along with each radio button instance to logically associate
that radio button's label text with that radio button.

Problem 2 requirements:

CS 328 - Week 4 Lab Exercise p. 4 of 10

Within your form element, within its top-level fieldset, before its submit button:

• Add another fieldset element containing at least three logically-grouped radio buttons, exactly
one of which is initially shown as checked.

– Be sure to include an appropriate logically-related label element for each radio button.

• Try selecting each radio button, and:

– Notice what happens when you click on the label for a radio button.

– Tip: if you can select more than one of your radio buttons at the same time, you have an error!

– Try submitting your form, and look over the name=value pair that appears at the end of your form's
action URL as a result.

– Think about: can you explain why that is the name=value pair submitted?

Validate an .xhtml copy of your document-so-far, correcting any issues that are shown, before you go on
to Problem 3.

Problem 3 - add a select element
Drop-down box - select element
• This one actually IS a separate element, and NOT a type of input element!

• This can work better than radio buttons when user is selecting EXACTLY ONE from a larger set of
specific options.

(although you can add an attribute to allow the user to select more than one from the set of options)

– By default, it is select-just-one, and selecting another unselects the previous selection

– Can use attribute multiple="multiple" to allow user to allow multiple values at a time

• BASIC syntax:
<select name="desired-name">
 <option value="whatever1"> shows in drop-down </option>
 <option value="whatever2"> shows in drop-down </option>
 <option value="whatever3" selected="selected"> shows initially
 </option>
</select>

• IMPORTANT TO KNOW:

– select is an inline element, and it CAN have content

– Use attribute selected="selected" for the SINGLE option element whose content you'd
like to be INITIALLY selected/showing when the form is created.

– Be sure to give the select element a name attribute,

AND to give each option element nested within it a value attribute.

– Note that the option element's content is what the user will see,

and the value of the option element's value attribute is what will be sent as the value for this
element's name=value pair if that option is selected when the form is submitted.

(and the name in the name=value pair will be the name attribute's value in the select element's

CS 328 - Week 4 Lab Exercise p. 4 of 10

Within your form element, within its top-level fieldset, before its submit button:

• Add another fieldset element containing at least three logically-grouped radio buttons, exactly
one of which is initially shown as checked.

– Be sure to include an appropriate logically-related label element for each radio button.

• Try selecting each radio button, and:

– Notice what happens when you click on the label for a radio button.

– Tip: if you can select more than one of your radio buttons at the same time, you have an error!

– Try submitting your form, and look over the name=value pair that appears at the end of your form's
action URL as a result.

– Think about: can you explain why that is the name=value pair submitted?

Validate an .xhtml copy of your document-so-far, correcting any issues that are shown, before you go on
to Problem 3.

Problem 3 - add a select element
Drop-down box - select element
• This one actually IS a separate element, and NOT a type of input element!

• This can work better than radio buttons when user is selecting EXACTLY ONE from a larger set of
specific options.

(although you can add an attribute to allow the user to select more than one from the set of options)

– By default, it is select-just-one, and selecting another unselects the previous selection

– Can use attribute multiple="multiple" to allow user to allow multiple values at a time

• BASIC syntax:
<select name="desired-name">
 <option value="whatever1"> shows in drop-down </option>
 <option value="whatever2"> shows in drop-down </option>
 <option value="whatever3" selected="selected"> shows initially
 </option>
</select>

• IMPORTANT TO KNOW:

– select is an inline element, and it CAN have content

– Use attribute selected="selected" for the SINGLE option element whose content you'd
like to be INITIALLY selected/showing when the form is created.

– Be sure to give the select element a name attribute,

AND to give each option element nested within it a value attribute.

– Note that the option element's content is what the user will see,

and the value of the option element's value attribute is what will be sent as the value for this
element's name=value pair if that option is selected when the form is submitted.

(and the name in the name=value pair will be the name attribute's value in the select element's

CS 328 - Week 4 Lab Exercise p. 5 of 10

start tag)

– Add a logically-related label element along with the select element to logically associate that
select/drop-down element's label text with that select/drop-down element.

Problem 3 requirements:
Within your form element, within its top-level fieldset, after Problem 2's fieldset but before the
form's submit button:

• ADD a select element containing at least five options, explicitly specifying which is initially shown.

– Be sure to include an appropriate logically-related label element for your select element.

– In this case, write it so that the user can only submit a single value at a time (do not include the
attribute multiple).

• Try selecting an option from your select element, and:

– Notice what happens when you click on the label for the select element.

– Look over the name=value pairs that appears at the end of your form's action URL as a result when
you submit your form.

– Think about: can you explain why that is the name=value pair submitted for your select element?

Validate an .xhtml copy of your document-so-far, correcting any issues that are shown, before you go on
to Problem 4.

Problem 4 - add a textarea element
textarea element
• This one also is a separate element, and NOT a type of input element!

• This can be a good choice when the user may be entering multiple lines of freeform content/text.

• IMPORTANT TO KNOW:

– textarea is an inline element, and it CAN have content

– Be sure to give the textarea element a name attribute.

The value of its name attribute will be the name for the name=value pair sent for this textarea
when its form is submitted.

– Its optional rows attribute specifies how many rows are displayed (height!).

– Its optional cols attribute specifies roughly how many "characters" are displayed (width!), but note
that this is approximate, especially if the display font is not monospaced (a W is wider than an i !)

– If this element happens to include content, that content will be the initial text showing within the
textarea element when the form is displayed.

– Fun fact: if there are blanks or newline in this content, it will be included within the textarea
when the form is displayed!

– Using a placeholder attribute along with empty content can be convenient, but note that:

1. This may not be read by screen reader software, so do not use this in place of a logically-
associated label.

CS 328 - Week 4 Lab Exercise p. 5 of 10

start tag)

– Add a logically-related label element along with the select element to logically associate that
select/drop-down element's label text with that select/drop-down element.

Problem 3 requirements:
Within your form element, within its top-level fieldset, after Problem 2's fieldset but before the
form's submit button:

• ADD a select element containing at least five options, explicitly specifying which is initially shown.

– Be sure to include an appropriate logically-related label element for your select element.

– In this case, write it so that the user can only submit a single value at a time (do not include the
attribute multiple).

• Try selecting an option from your select element, and:

– Notice what happens when you click on the label for the select element.

– Look over the name=value pairs that appears at the end of your form's action URL as a result when
you submit your form.

– Think about: can you explain why that is the name=value pair submitted for your select element?

Validate an .xhtml copy of your document-so-far, correcting any issues that are shown, before you go on
to Problem 4.

Problem 4 - add a textarea element
textarea element
• This one also is a separate element, and NOT a type of input element!

• This can be a good choice when the user may be entering multiple lines of freeform content/text.

• IMPORTANT TO KNOW:

– textarea is an inline element, and it CAN have content

– Be sure to give the textarea element a name attribute.

The value of its name attribute will be the name for the name=value pair sent for this textarea
when its form is submitted.

– Its optional rows attribute specifies how many rows are displayed (height!).

– Its optional cols attribute specifies roughly how many "characters" are displayed (width!), but note
that this is approximate, especially if the display font is not monospaced (a W is wider than an i !)

– If this element happens to include content, that content will be the initial text showing within the
textarea element when the form is displayed.

– Fun fact: if there are blanks or newline in this content, it will be included within the textarea
when the form is displayed!

– Using a placeholder attribute along with empty content can be convenient, but note that:

1. This may not be read by screen reader software, so do not use this in place of a logically-
associated label.

CS 328 - Week 4 Lab Exercise p. 6 of 10

2. This placeholder attribute's value will not be sent as the value for the textarea if the user
has not entered anything in this textarea when the form is submitted.

3. If the textarea element has ANY content -- even a single blank! -- it overrides the
placeholder attribute and you won't see the placeholder attribute's value in your textarea. So,
when you have a placeholder attribute, put the textarea's end tag RIGHT after its start tag.

– Whatever (non-placeholder) content is appearing within the textarea when the form is
submitted will become the value for the name=value pair sent for this textarea.

– And, if there are blanks or newline in this content, it will be converted to URL-friendly
character equivalents and included in the value submitted!

– Add a logically-related label element along with the textarea element to logically associate that
textarea element's label text with that textarea.

Problem 4 requirements:
Within your form element, within its top-level fieldset, after Problem 3's select element but before
the form's submit button:

• Add a textarea element, with at least three rows displayed.

– Include a placeholder attribute with an appropriate value.

– Be sure to include an appropriate label element for your textarea element.

• Try entering more than one line of text in your textarea and then submit.

– Notice the name=value submitted for this: you should see special characters in the value part
representing the newline character and any spaces you entered.

– Think about: can you explain why that is the name=value pair submitted?

Validate an .xhtml copy of your document-so-far, correcting any issues that are shown, before you go on
to Problem 5.

Lab set-up for PL/SQL Problems 5-6
• On nrs-projects, if the driver has not previously executed set-up-ex-tbls.sql in their Oracle

account, they should do so, so that they have the tables empl, dept, and customer in their database.

– If needed, they can get a copy of this script using:

cp ~st10/set-up-ex-tbls.sql . # don't forget the blank and period!

• In a SQL script lab4.sql:

– In opening comment(s), FIRST put the script file's name, both of your names, and today's date/last
modified date.

– Put in the SQL*Plus command:
set serveroutput on

...so that you will see output from dbms_output.put_line statements you put into today's
PL/SQL subroutine.

– Start spooling to a file lab4-out.txt:
spool lab4-out.txt

CS 328 - Week 4 Lab Exercise p. 6 of 10

2. This placeholder attribute's value will not be sent as the value for the textarea if the user
has not entered anything in this textarea when the form is submitted.

3. If the textarea element has ANY content -- even a single blank! -- it overrides the
placeholder attribute and you won't see the placeholder attribute's value in your textarea. So,
when you have a placeholder attribute, put the textarea's end tag RIGHT after its start tag.

– Whatever (non-placeholder) content is appearing within the textarea when the form is
submitted will become the value for the name=value pair sent for this textarea.

– And, if there are blanks or newline in this content, it will be converted to URL-friendly
character equivalents and included in the value submitted!

– Add a logically-related label element along with the textarea element to logically associate that
textarea element's label text with that textarea.

Problem 4 requirements:
Within your form element, within its top-level fieldset, after Problem 3's select element but before
the form's submit button:

• Add a textarea element, with at least three rows displayed.

– Include a placeholder attribute with an appropriate value.

– Be sure to include an appropriate label element for your textarea element.

• Try entering more than one line of text in your textarea and then submit.

– Notice the name=value submitted for this: you should see special characters in the value part
representing the newline character and any spaces you entered.

– Think about: can you explain why that is the name=value pair submitted?

Validate an .xhtml copy of your document-so-far, correcting any issues that are shown, before you go on
to Problem 5.

Lab set-up for PL/SQL Problems 5-6
• On nrs-projects, if the driver has not previously executed set-up-ex-tbls.sql in their Oracle

account, they should do so, so that they have the tables empl, dept, and customer in their database.

– If needed, they can get a copy of this script using:

cp ~st10/set-up-ex-tbls.sql . # don't forget the blank and period!

• In a SQL script lab4.sql:

– In opening comment(s), FIRST put the script file's name, both of your names, and today's date/last
modified date.

– Put in the SQL*Plus command:
set serveroutput on

...so that you will see output from dbms_output.put_line statements you put into today's
PL/SQL subroutine.

– Start spooling to a file lab4-out.txt:
spool lab4-out.txt

CS 328 - Week 4 Lab Exercise p. 7 of 10

...(and make sure you spool off at the script's end!)

– Put both of your names in a prompt command.

Problem 5 - write a PL/SQL stored procedure empl_overview
Consider this version of PL/SQL stored procedure hello_world (slightly added to after class, including
what will be the CS-328-required opening comment block):
/*===
 procedure: hello_world: void -> void
 purpose: expects nothing, returns nothing, and has the
 side-effect of (IF serveroutput is on) printing to
 the screen a cheery greeting, the current date,
 and the current value of local variable quantity
===*/

create or replace procedure hello_world as
 curr_date date;
 quantity integer := 1;
begin
 select sysdate
 into curr_date
 from dual;

 quantity := quantity + 1;

 dbms_output.put_line('Hello, world! on ' || curr_date);
 dbms_output.put_line('quantity is: ' || quantity);
end;
/
show errors

(You can see an overly-comment version of this that includes testing calls posted with the Week 4 Lecture
2 class examples.)

To get some practice writing a PL/SQL stored procedure, write a stored procedure empl_overview that
meets the following requirements:

• It expects nothing (that is, it expects no arguments).

• It returns nothing, but has the side-effect (IF serveroutput is set to on) of printing to the screen the
following (in reasonable messages):

– the current sysdate

– the current number of employees

– the average employee salary for the current employees

• Create an opening comment block for your procedure that has a procedure: part and purpose: part
using the same style that you see for procedure hello_world above.

• Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

CS 328 - Week 4 Lab Exercise p. 7 of 10

...(and make sure you spool off at the script's end!)

– Put both of your names in a prompt command.

Problem 5 - write a PL/SQL stored procedure empl_overview
Consider this version of PL/SQL stored procedure hello_world (slightly added to after class, including
what will be the CS-328-required opening comment block):
/*===
 procedure: hello_world: void -> void
 purpose: expects nothing, returns nothing, and has the
 side-effect of (IF serveroutput is on) printing to
 the screen a cheery greeting, the current date,
 and the current value of local variable quantity
===*/

create or replace procedure hello_world as
 curr_date date;
 quantity integer := 1;
begin
 select sysdate
 into curr_date
 from dual;

 quantity := quantity + 1;

 dbms_output.put_line('Hello, world! on ' || curr_date);
 dbms_output.put_line('quantity is: ' || quantity);
end;
/
show errors

(You can see an overly-comment version of this that includes testing calls posted with the Week 4 Lecture
2 class examples.)

To get some practice writing a PL/SQL stored procedure, write a stored procedure empl_overview that
meets the following requirements:

• It expects nothing (that is, it expects no arguments).

• It returns nothing, but has the side-effect (IF serveroutput is set to on) of printing to the screen the
following (in reasonable messages):

– the current sysdate

– the current number of employees

– the average employee salary for the current employees

• Create an opening comment block for your procedure that has a procedure: part and purpose: part
using the same style that you see for procedure hello_world above.

• Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

CS 328 - Week 4 Lab Exercise p. 8 of 10

• Then put a comment saying you are about to test your procedure empl_overview.

– test it? Yes; and since it is a procedure, we'll kluge tests by printing to the screen what we SHOULD
see if the procedure is working, followed by the desired testing call.

– For example, here are the tests I added for hello_world after class:
prompt ============
prompt TESTING hello_world, should see Hello, world! on the current date
prompt (using: exec hello_world())
prompt

exec hello_world()

prompt ============
prompt TESTING hello_world, should see Hello, world! on the current date
prompt (using: exec hello_world)
prompt

exec hello_world

• SO: in your lab4.sql, follow your show errors command with a blank line and then prompt
command(s) stating that you are about to test empl_overview and describe what you should see if it is
working properly.

– (Your description should be specific enough that someone looking just at the spooled output can tell
if the test passed or not.)

– Then give a blank line, followed by a SQL*Plus command calling your procedure.

• Then, after a blank line, include this delete command:
delete from empl
where job_title = 'Clerk';

– Follow this with a blank line and then prompt command(s) stating that you are about to test
empl_overview on the case in which all the clerks were removed, and describe what you should
see if it is working properly.

– Then give a blank line, followed by a SQL*Plus command calling your procedure again.

– Then give a blank line, followed by calling the command:
rollback;

...to undo the deletion of the clerks!

• Finally, end your script by turning off spooling:
spool off

If successful, your resulting lab4-out.txt should show that your procedure successfully compiled, and
that its tests passed.

Problem 6 - demo that empl_overview IS now stored in the database
If, in Problem 5, your procedure empl_overview compiled without errors, this PL/SQL stored procedure
is now stored in your Oracle database along with your tables, views, etc.

You do not have to recompile or recreate it next time you log into sqlplus -- it will persist!

CS 328 - Week 4 Lab Exercise p. 8 of 10

• Then put a comment saying you are about to test your procedure empl_overview.

– test it? Yes; and since it is a procedure, we'll kluge tests by printing to the screen what we SHOULD
see if the procedure is working, followed by the desired testing call.

– For example, here are the tests I added for hello_world after class:
prompt ============
prompt TESTING hello_world, should see Hello, world! on the current date
prompt (using: exec hello_world())
prompt

exec hello_world()

prompt ============
prompt TESTING hello_world, should see Hello, world! on the current date
prompt (using: exec hello_world)
prompt

exec hello_world

• SO: in your lab4.sql, follow your show errors command with a blank line and then prompt
command(s) stating that you are about to test empl_overview and describe what you should see if it is
working properly.

– (Your description should be specific enough that someone looking just at the spooled output can tell
if the test passed or not.)

– Then give a blank line, followed by a SQL*Plus command calling your procedure.

• Then, after a blank line, include this delete command:
delete from empl
where job_title = 'Clerk';

– Follow this with a blank line and then prompt command(s) stating that you are about to test
empl_overview on the case in which all the clerks were removed, and describe what you should
see if it is working properly.

– Then give a blank line, followed by a SQL*Plus command calling your procedure again.

– Then give a blank line, followed by calling the command:
rollback;

...to undo the deletion of the clerks!

• Finally, end your script by turning off spooling:
spool off

If successful, your resulting lab4-out.txt should show that your procedure successfully compiled, and
that its tests passed.

Problem 6 - demo that empl_overview IS now stored in the database
If, in Problem 5, your procedure empl_overview compiled without errors, this PL/SQL stored procedure
is now stored in your Oracle database along with your tables, views, etc.

You do not have to recompile or recreate it next time you log into sqlplus -- it will persist!

CS 328 - Week 4 Lab Exercise p. 9 of 10

To demonstrate this:

• Exit sqlplus, and then restart it.

• Type these commands in sqlplus:
set serveroutput on

spool prob6-demo.txt

prompt include both of your names here
exec empl_overview()

spool off

• Exit sqlplus.

Your resulting file prob6-demo.txt should contain both of your names, followed by the result of
successfully running your stored procedure empl_overview.

BEFORE you leave lab:
Make sure that you both have copies of the files:

• your-lab4-file-name.html

your-lab4-file-name.xhtml

– that include a correct URL in a comment for successfully executing this document from one of your
nrs-projects account(s)

– (that is, I will again leave it up to the navigator to decide if they would like to UPDATE their your-
lab4-file-name.html and your-lab4-file-name.xhtml so its opening comment includes the URL
to their copy, or if they want to leave the URL for the driver's copy)

• lab4.sql and lab4-out.txt

• prob6-demo.txt

...and you BOTH submit these five files using ~st10/328submit on
nrs-projects, with a lab number of 84.

How the navigator can get Problem 5-6's files:
(for a driver with username dr12, and a navigator with username na89 - replace these with your actual
usernames when you actually do this)

These may be in a directory that is harder for the navigator to make a copy from.

For example -- they might be in a directory 328lab04 that is not a sub-directory of public_html., but
is instead a subdirectory of dr12's home directory.

Here is an approach for this:

• The driver should temporarily make the directory with these files world-executable, and these files
world-readable -- assuming the driver is currently in their directory 328lab04:

chmod 711 . # notice the space and the period!
chmod 644 lab4.sql lab4-out.txt prob6-demo.txt

CS 328 - Week 4 Lab Exercise p. 9 of 10

To demonstrate this:

• Exit sqlplus, and then restart it.

• Type these commands in sqlplus:
set serveroutput on

spool prob6-demo.txt

prompt include both of your names here
exec empl_overview()

spool off

• Exit sqlplus.

Your resulting file prob6-demo.txt should contain both of your names, followed by the result of
successfully running your stored procedure empl_overview.

BEFORE you leave lab:
Make sure that you both have copies of the files:

• your-lab4-file-name.html

your-lab4-file-name.xhtml

– that include a correct URL in a comment for successfully executing this document from one of your
nrs-projects account(s)

– (that is, I will again leave it up to the navigator to decide if they would like to UPDATE their your-
lab4-file-name.html and your-lab4-file-name.xhtml so its opening comment includes the URL
to their copy, or if they want to leave the URL for the driver's copy)

• lab4.sql and lab4-out.txt

• prob6-demo.txt

...and you BOTH submit these five files using ~st10/328submit on
nrs-projects, with a lab number of 84.

How the navigator can get Problem 5-6's files:
(for a driver with username dr12, and a navigator with username na89 - replace these with your actual
usernames when you actually do this)

These may be in a directory that is harder for the navigator to make a copy from.

For example -- they might be in a directory 328lab04 that is not a sub-directory of public_html., but
is instead a subdirectory of dr12's home directory.

Here is an approach for this:

• The driver should temporarily make the directory with these files world-executable, and these files
world-readable -- assuming the driver is currently in their directory 328lab04:

chmod 711 . # notice the space and the period!
chmod 644 lab4.sql lab4-out.txt prob6-demo.txt

CS 328 - Week 4 Lab Exercise p. 10 of 10

• Now the navigator can copy these into a directory of their choice -- assuming they are within the
directory they want to copy into:

cp ~dr12/328lab04/lab4.sql . # notice the space and the period!

cp ~dr12/328lab04/lab4-out.txt .

cp ~dr12/328lab04/prob6-demo.txt .

• After the copies are successfully made, the driver and navigator should BOTH protect these files:
chmod 600 lab4.sql lab4-out.txt prob6-demo.txt

• ...and both can now submit these using ~st10/328submit from their directory containing these files.

Reminder: how the navigator can get a copy of the .html file
(for a driver with username dr12, and a navigator with username na89 - replace these with your actual
usernames when you actually do this)

• Because this is a file the nrs-projects web server has to be able to reach, the navigator should be able to
get a copy of this file from the driver using an approach like this:

– Assume the driver has, in their public_html directory, a sub-directory 328lab04 containing
your-lab4-file-name.html. (Adapt the following accordingly based on your driver's actual
your-lab4-file-name.html location.)

– The NAVIGATOR na89 can now:

– log in to THEIR (na89's) nrs-projects account, and run these commands:
cd public_html

mkdir 328lab04 # or other name they choose

chmod 711 328lab04

cd 328lab04

cp ~dr12/public_html/328lab04/your-lab4-file-name.html . # note space & period!

– Now the navigator na89 should have their own copy of your-lab4-file-name.html

• Either repeat for your-lab4-file-name.xhtml,

or (if desired) change the URL within the navigator's your-lab4-file-name.html to refer to the
navigator's copy, and then make the .xhtml copy (and double-check that it still validates):

cp your-lab4-file-name.html your-lab4-file-name.xhtml

CS 328 - Week 4 Lab Exercise p. 10 of 10

• Now the navigator can copy these into a directory of their choice -- assuming they are within the
directory they want to copy into:

cp ~dr12/328lab04/lab4.sql . # notice the space and the period!

cp ~dr12/328lab04/lab4-out.txt .

cp ~dr12/328lab04/prob6-demo.txt .

• After the copies are successfully made, the driver and navigator should BOTH protect these files:
chmod 600 lab4.sql lab4-out.txt prob6-demo.txt

• ...and both can now submit these using ~st10/328submit from their directory containing these files.

Reminder: how the navigator can get a copy of the .html file
(for a driver with username dr12, and a navigator with username na89 - replace these with your actual
usernames when you actually do this)

• Because this is a file the nrs-projects web server has to be able to reach, the navigator should be able to
get a copy of this file from the driver using an approach like this:

– Assume the driver has, in their public_html directory, a sub-directory 328lab04 containing
your-lab4-file-name.html. (Adapt the following accordingly based on your driver's actual
your-lab4-file-name.html location.)

– The NAVIGATOR na89 can now:

– log in to THEIR (na89's) nrs-projects account, and run these commands:
cd public_html

mkdir 328lab04 # or other name they choose

chmod 711 328lab04

cd 328lab04

cp ~dr12/public_html/328lab04/your-lab4-file-name.html . # note space & period!

– Now the navigator na89 should have their own copy of your-lab4-file-name.html

• Either repeat for your-lab4-file-name.xhtml,

or (if desired) change the URL within the navigator's your-lab4-file-name.html to refer to the
navigator's copy, and then make the .xhtml copy (and double-check that it still validates):

cp your-lab4-file-name.html your-lab4-file-name.xhtml

	Deadline
	Purpose
	How to submit
	Requirements
	Set-up for HTML Problems 1-4
	Consider before you start:
	More-Scattershot approach:
	More-Thematic approach:

	Problem 1 - start a form
	validate your document-so-far

	Problem 2 - add a fieldset with logically-grouped radio buttons
	Reminder - Radio buttons
	Problem 2 requirements:

	Problem 3 - add a select element
	Drop-down box - select element
	Problem 3 requirements:

	Problem 4 - add a textarea element
	textarea element
	Problem 4 requirements:

	Lab set-up for PL/SQL Problems 5-6
	Problem 5 - write a PL/SQL stored procedure empl_overview
	Problem 6 - demo that empl_overview IS now stored in the database
	BEFORE you leave lab:
	How the navigator can get Problem 5-6's files:
	Reminder: how the navigator can get a copy of the .html file

