
CS 328 - Week 5 Lab Exercise p. 1 of 4

CS 328 - Week 5 Lab Exercise - 2025-02-20/21

Deadline
Due by the end of lab.

Purpose
To practice more with PL/SQL, including writing a stored function and a stored procedure, and including
practice with parameters, exception-handling, and a cursor-controlled for loop.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number

of 85.

Requirements
• You are required to work in pairs for this lab exercise.

– This means two people working at ONE computer, one typing ("driving"), one saying what to type
("navigating"),

while BOTH are looking at the shared computer screen and discussing concepts/issues along the
way.

• Make sure BOTH of your names appear in each file submitted.

• When you are done, before you leave lab, BOTH of you should submit appropriate versions of these
files using ~st10/328submit on nrs-projects, with a lab number of 85.

• You are expected to follow the style standards from the posted "CS 328 SQL and PL/SQL Coding
Standards so far" (at
https://nrs-projects.humboldt.edu/~st10/s25cs328/328-sql-plsql-coding-standards.pdf).

Lab set-up
• On nrs-projects, if the driver has not previously executed set-up-ex-tbls.sql in their Oracle

account, they should do so, so that they have the tables empl, dept, and customer in their database.

– If needed, they can get a copy of this script using:

cp ~st10/set-up-ex-tbls.sql . # don't forget the blank and period!

• In a SQL script lab5.sql:

– In opening comment(s), FIRST put the script file's name, both of your names, and today's date/last
modified date.

– Put in the SQL*Plus command:
set serveroutput on

...so that you will see output from dbms_output.put_line statements you put into today's
PL/SQL subroutine.

CS 328 - Week 5 Lab Exercise p. 1 of 4

CS 328 - Week 5 Lab Exercise - 2025-02-20/21

Deadline
Due by the end of lab.

Purpose
To practice more with PL/SQL, including writing a stored function and a stored procedure, and including
practice with parameters, exception-handling, and a cursor-controlled for loop.

How to submit
Submit your files for this lab using ~st10/328submit on nrs-projects, each time entering a lab number

of 85.

Requirements
• You are required to work in pairs for this lab exercise.

– This means two people working at ONE computer, one typing ("driving"), one saying what to type
("navigating"),

while BOTH are looking at the shared computer screen and discussing concepts/issues along the
way.

• Make sure BOTH of your names appear in each file submitted.

• When you are done, before you leave lab, BOTH of you should submit appropriate versions of these
files using ~st10/328submit on nrs-projects, with a lab number of 85.

• You are expected to follow the style standards from the posted "CS 328 SQL and PL/SQL Coding
Standards so far" (at
https://nrs-projects.humboldt.edu/~st10/s25cs328/328-sql-plsql-coding-standards.pdf).

Lab set-up
• On nrs-projects, if the driver has not previously executed set-up-ex-tbls.sql in their Oracle

account, they should do so, so that they have the tables empl, dept, and customer in their database.

– If needed, they can get a copy of this script using:

cp ~st10/set-up-ex-tbls.sql . # don't forget the blank and period!

• In a SQL script lab5.sql:

– In opening comment(s), FIRST put the script file's name, both of your names, and today's date/last
modified date.

– Put in the SQL*Plus command:
set serveroutput on

...so that you will see output from dbms_output.put_line statements you put into today's
PL/SQL subroutine.

CS 328 - Week 5 Lab Exercise p. 2 of 4

– Start spooling to a file lab5-out.txt:
spool lab5-out.txt

...(and make sure you spool off at the script's end!)

– Put both of your names in a prompt command.

Problem 1 - stored function num_pd_more
To get some practice writing a PL/SQL stored function, in your SQL script lab5.sql, write a stored
function num_pd_more that meets the following requirements:

• It expects a lower-limit salary value.

– Note: use the type number for this parameter.

• It returns the number of employees in the empl table whose salary is strictly greater than that given
lower-limit salary value.

• Look in the posted SQL script 328lect05-1.sql at the version of the stored function job_count
that we created during class on Monday.

– Create an opening comment block for your function that has a function: part and purpose: part
in the same style that you see here. (You don't have to give an examples: part, but you can if you
wish.)

– Follow that with the PL/SQL code creating your function.

• Remember to follow your PL/SQL function with:
/

show errors

• Then put a comment saying you are about to test your function num_pd_more.

• Follow that with at least two tests of your function, written in the same style as the tests for function
job_count, making sure that, for each test, you put a prompt command describing what results
should be seen followed by the statements for that test.

Remember:

– You will need to declare a SQL*Plus local variable to hold the result returned by your function.

– The exec command is a little different when calling a function than when calling a procedure.

– You can use the print command to display the value of a SQL*Plus local variable.

If successful, your resulting lab5-out.txt should show that your function successfully compiled, and
that its tests passed.

Problem 2 - some light PL/SQL exception-handling practice
Consider: in the empl table created in set-up-ex-tbls.sql, the mgr attribute is a foreign key
referencing empl's empl_num attribute -- mgr is the employee number of that employee's manager.

One attempt at a PL/SQL stored function get_manager, that expects an employee's last name and returns
the last name of that employee's manager, can be found in get-mgr-v1.sql, which you can copy
directly to the driver's nrs-projects current workin directory using:

CS 328 - Week 5 Lab Exercise p. 2 of 4

– Start spooling to a file lab5-out.txt:
spool lab5-out.txt

...(and make sure you spool off at the script's end!)

– Put both of your names in a prompt command.

Problem 1 - stored function num_pd_more
To get some practice writing a PL/SQL stored function, in your SQL script lab5.sql, write a stored
function num_pd_more that meets the following requirements:

• It expects a lower-limit salary value.

– Note: use the type number for this parameter.

• It returns the number of employees in the empl table whose salary is strictly greater than that given
lower-limit salary value.

• Look in the posted SQL script 328lect05-1.sql at the version of the stored function job_count
that we created during class on Monday.

– Create an opening comment block for your function that has a function: part and purpose: part
in the same style that you see here. (You don't have to give an examples: part, but you can if you
wish.)

– Follow that with the PL/SQL code creating your function.

• Remember to follow your PL/SQL function with:
/

show errors

• Then put a comment saying you are about to test your function num_pd_more.

• Follow that with at least two tests of your function, written in the same style as the tests for function
job_count, making sure that, for each test, you put a prompt command describing what results
should be seen followed by the statements for that test.

Remember:

– You will need to declare a SQL*Plus local variable to hold the result returned by your function.

– The exec command is a little different when calling a function than when calling a procedure.

– You can use the print command to display the value of a SQL*Plus local variable.

If successful, your resulting lab5-out.txt should show that your function successfully compiled, and
that its tests passed.

Problem 2 - some light PL/SQL exception-handling practice
Consider: in the empl table created in set-up-ex-tbls.sql, the mgr attribute is a foreign key
referencing empl's empl_num attribute -- mgr is the employee number of that employee's manager.

One attempt at a PL/SQL stored function get_manager, that expects an employee's last name and returns
the last name of that employee's manager, can be found in get-mgr-v1.sql, which you can copy
directly to the driver's nrs-projects current workin directory using:

CS 328 - Week 5 Lab Exercise p. 3 of 4

cp ~st10/get-mgr-v1.sql . # don't forget the space and period!

But, when you run this, it has some definite issues, that you should be able to see when you run this in
sqlplus. (The function is followed by some testing calls.)

 So: COPY this first version (along with its opening comment and its tests) into your lab5.sql file, and
then modify it:

• Insert your names in the comment that specifies that you do so

• Add EXCEPTION HANDLING to the function get_manager to handle the tests that currently do
not pass, so that they now DO pass.

If successful, your resulting lab5-out.txt should show that your modified version of get_manager
successfully compiled, and that its tests passed.

Problem 3 - stored procedure list_managers
Now that you have get_manager, that allows for a good opportunity to practice calling a PL/SQL
function from another PL/SQL subroutine, and also allow for a good excuse to practice with a cursor-
controlled for loop.

In your SQL script lab5.sql, write a PL/SQL procedure list_managers that meets the following
requirements:

• It expects a job title.

• It prints to the screen, for each employee with that job title:

– their last name,

– then a blank and a dash and a blank,

– then managed by: followed by the last name of their manager.

• (And it returns nothing, since it is a procedure!)

• If there are no employees with that job title, it should simply print a message to the screen that includes
the nonexistent job title, and notes that there are no employees with that job title.

• For full credit, it is required to make appropriate use of a cursor-controlled for loop.

• For full credit, it is required to appropriately call Problem 2's function get_manager to get the last
names of the managers for the employees with that job title.

• Look in the posted SQL script 328lect05-1.sql at the stored procedure job_overview that we
created during class on Monday.

– Create an opening comment block for your function that has a procedure: part, a purpose: part.
AND a uses: part, in the same style that you see here. (You don't have to give an examples:
part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure list_managers.

CS 328 - Week 5 Lab Exercise p. 3 of 4

cp ~st10/get-mgr-v1.sql . # don't forget the space and period!

But, when you run this, it has some definite issues, that you should be able to see when you run this in
sqlplus. (The function is followed by some testing calls.)

 So: COPY this first version (along with its opening comment and its tests) into your lab5.sql file, and
then modify it:

• Insert your names in the comment that specifies that you do so

• Add EXCEPTION HANDLING to the function get_manager to handle the tests that currently do
not pass, so that they now DO pass.

If successful, your resulting lab5-out.txt should show that your modified version of get_manager
successfully compiled, and that its tests passed.

Problem 3 - stored procedure list_managers
Now that you have get_manager, that allows for a good opportunity to practice calling a PL/SQL
function from another PL/SQL subroutine, and also allow for a good excuse to practice with a cursor-
controlled for loop.

In your SQL script lab5.sql, write a PL/SQL procedure list_managers that meets the following
requirements:

• It expects a job title.

• It prints to the screen, for each employee with that job title:

– their last name,

– then a blank and a dash and a blank,

– then managed by: followed by the last name of their manager.

• (And it returns nothing, since it is a procedure!)

• If there are no employees with that job title, it should simply print a message to the screen that includes
the nonexistent job title, and notes that there are no employees with that job title.

• For full credit, it is required to make appropriate use of a cursor-controlled for loop.

• For full credit, it is required to appropriately call Problem 2's function get_manager to get the last
names of the managers for the employees with that job title.

• Look in the posted SQL script 328lect05-1.sql at the stored procedure job_overview that we
created during class on Monday.

– Create an opening comment block for your function that has a procedure: part, a purpose: part.
AND a uses: part, in the same style that you see here. (You don't have to give an examples:
part, but you can if you wish.)

– Follow that with the PL/SQL code creating your procedure.

• Remember to follow your PL/SQL procedure with:
/

show errors

• Then put a comment saying you are about to test your procedure list_managers.

CS 328 - Week 5 Lab Exercise p. 4 of 4

• Follow that with at least two tests of your procedure, written in the same style as the tests for procedure
job_overview, making sure that, for each test, you put a prompt command describing what results
should be seen followed by the statements for that test.

– At least one of these tests should be for a job title held by more than one employee.

– At least one of these tests should be for a non-existent job title.

• Make sure that your lab5.sql ends with:
spool off

If successful, your resulting lab5-out.txt should show that your procedure successfully compiled, and
that its tests passed.

BEFORE you leave lab:
Make sure that you both have copies of the files:

• lab5.sql and lab5-out.txt

...and you BOTH submit these two files using ~st10/328submit on
nrs-projects, with a lab number of 85.

How the navigator can get files lab5.sql and lab5-out.txt:
(for a driver with username dr12, and a navigator with username na89 - replace these with your actual
usernames when you actually do this)

These may be in a directory that is harder for the navigator to make a copy from than public_html.

For example -- they might be in a directory 328lab5 that is not a sub-directory of public_html, but is
instead a subdirectory of the driver's home directory ~dr12.

Here is an approach for this:

• The driver dr12 should temporarily make the directory with these files world-readable and -executable,
and these files world-readable:

chmod 755 . # notice the space and the period!
chmod 644 lab5.sql lab5-out.txt

• Now the navigator can copy these into a directory of their choice -- assuming the navigator is within
the directory they want to copy into:

cp ~dr12/328lab5/* . # notice the space and the period!

• The driver and navigator should BOTH then protect these files:
chmod 600 lab5.sql lab5-out.txt

...and both can protect the directory containing them:

chmod 700 . # notice the space and the period!

...and both can now submit these using ~st10/328submit from the directory containing these files.

CS 328 - Week 5 Lab Exercise p. 4 of 4

• Follow that with at least two tests of your procedure, written in the same style as the tests for procedure
job_overview, making sure that, for each test, you put a prompt command describing what results
should be seen followed by the statements for that test.

– At least one of these tests should be for a job title held by more than one employee.

– At least one of these tests should be for a non-existent job title.

• Make sure that your lab5.sql ends with:
spool off

If successful, your resulting lab5-out.txt should show that your procedure successfully compiled, and
that its tests passed.

BEFORE you leave lab:
Make sure that you both have copies of the files:

• lab5.sql and lab5-out.txt

...and you BOTH submit these two files using ~st10/328submit on
nrs-projects, with a lab number of 85.

How the navigator can get files lab5.sql and lab5-out.txt:
(for a driver with username dr12, and a navigator with username na89 - replace these with your actual
usernames when you actually do this)

These may be in a directory that is harder for the navigator to make a copy from than public_html.

For example -- they might be in a directory 328lab5 that is not a sub-directory of public_html, but is
instead a subdirectory of the driver's home directory ~dr12.

Here is an approach for this:

• The driver dr12 should temporarily make the directory with these files world-readable and -executable,
and these files world-readable:

chmod 755 . # notice the space and the period!
chmod 644 lab5.sql lab5-out.txt

• Now the navigator can copy these into a directory of their choice -- assuming the navigator is within
the directory they want to copy into:

cp ~dr12/328lab5/* . # notice the space and the period!

• The driver and navigator should BOTH then protect these files:
chmod 600 lab5.sql lab5-out.txt

...and both can protect the directory containing them:

chmod 700 . # notice the space and the period!

...and both can now submit these using ~st10/328submit from the directory containing these files.

	Deadline
	Purpose
	How to submit
	Requirements
	Lab set-up
	Problem 1 - stored function num_pd_more
	Problem 2 - some light PL/SQL exception-handling practice
	Problem 3 - stored procedure list_managers
	BEFORE you leave lab:
	How the navigator can get files lab5.sql and lab5-out.txt:

