
CS 328 - Week 10 Lab Exercise - 2025-04-03/04 p. 1

CS 328 - Week 10 Lab Exercise - 2025-04-03/04
Deadline
Due by the end of lab.

Purpose
To practice using OCI from PHP to request data from Oracle.

How to submit
Submit your files using ~st10/328submit on nrs-projects, each time entering a lab number of 90.

Requirements
• To make sure EACH class member can successfully connect from PHP on nrs-projects to the Oracle student

database, this is a rare individual lab exercise!

• When you are done, before you leave lab, be sure to submit appropriate versions of these files using
~st10/328submit on nrs-projects, with a lab number of 90.

Problem 1 - Start your file 328lab10.php
I have made an adapted version of yesterday's try-oracle.php in a new file, 328lab10-start.php,
to serve as the starting point for today's 328lab10.php.

• Go to your desired directory under public_html, and start your 328lab10.php:

cp ~st10/328lab10-start.php 328lab10.php

• Fill in the opening comment block, putting in your name, the last modified date, and the URL that can be
used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a browser!)

• Do not include any inline or internal CSS rules in your 328lab10.php.

– (If you are sufficiently annoyed by the default formatting, you may optionally add a lab10.css file to
further format your 328lab10.php.)

• Within the footer element near the end of the body element, add a p element whose content includes your
name.

• BEFORE YOU GO ON, run your 328lab10.php and make sure it works! (You should see today's date
displayed, and your name in the footer!)

LET ME KNOW if it is not working!

Problem 2 - looping through the results of a query that returns
multiple rows

Consider your 328lab10.php.

It connects to Humboldt's Oracle student database using OCI (in a no-end-user-login approach) and queries for
today's date.

But, this particular query happened to just return exactly one row.

CS 328 - Week 10 Lab Exercise - 2025-04-03/04 p. 1

CS 328 - Week 10 Lab Exercise - 2025-04-03/04
Deadline
Due by the end of lab.

Purpose
To practice using OCI from PHP to request data from Oracle.

How to submit
Submit your files using ~st10/328submit on nrs-projects, each time entering a lab number of 90.

Requirements
• To make sure EACH class member can successfully connect from PHP on nrs-projects to the Oracle student

database, this is a rare individual lab exercise!

• When you are done, before you leave lab, be sure to submit appropriate versions of these files using
~st10/328submit on nrs-projects, with a lab number of 90.

Problem 1 - Start your file 328lab10.php
I have made an adapted version of yesterday's try-oracle.php in a new file, 328lab10-start.php,
to serve as the starting point for today's 328lab10.php.

• Go to your desired directory under public_html, and start your 328lab10.php:

cp ~st10/328lab10-start.php 328lab10.php

• Fill in the opening comment block, putting in your name, the last modified date, and the URL that can be
used to run your document.

– (You will lose some credit if this URL does not work when I or the grader paste it into a browser!)

• Do not include any inline or internal CSS rules in your 328lab10.php.

– (If you are sufficiently annoyed by the default formatting, you may optionally add a lab10.css file to
further format your 328lab10.php.)

• Within the footer element near the end of the body element, add a p element whose content includes your
name.

• BEFORE YOU GO ON, run your 328lab10.php and make sure it works! (You should see today's date
displayed, and your name in the footer!)

LET ME KNOW if it is not working!

Problem 2 - looping through the results of a query that returns
multiple rows

Consider your 328lab10.php.

It connects to Humboldt's Oracle student database using OCI (in a no-end-user-login approach) and queries for
today's date.

But, this particular query happened to just return exactly one row.

CS 328 - Week 10 Lab Exercise - 2025-04-03/04 p. 2

So, after requesting a database connection (which returns a connection object if successful):
 $conn = oci_connect(username: $conn_username,

 password: $ora_php_password,

 connection_string: null,

 encoding: 'AL32UTF8',

 session_mode: OCI_DEFAULT);

then requesting the set-up for a desired query statement (which returns a statement object if successful):
 $date_query_str = "select sysdate

 from dual";

 $date_stmt = oci_parse($conn, $date_query_str);

then requesting that the statement object's statement be executed:
 oci_execute($date_stmt, OCI_DEFAULT);

we could request that the first row in that executed query statement be fetched:
 oci_fetch($date_stmt);

and obtain the 1st value in the fetched/current row:
 <p> Today's date is <?= oci_result($date_stmt, 1) ?> </p>

and then, since we have fetched all of the desired rows (since this particular query always returns exactly one
row), we are done with this statement, so we request that this statement be freed:
 oci_free_statement($date_stmt);

and, when THIS particular PHP response is finished using the database connection, it explicitly closes that
connection using:
 oci_close($conn);

CLASS STYLE STANDARD: a PHP using OCI to connect to the Oracle student database is expected to
always explicitly close that connection, using oci_close, before completing its response.

It was also mentioned that oci_fetch -- while it does NOT return the fetched row -- does return a value that
is considered "truthy" if there was another row to fetch, and returns a value that is considered "falsey" if there
were no more rows in the query result to be fetched.

This means that a while loop works very well for handling the rows resulting from a query statement:
 while (oci_fetch($query_stmt))

 {

 ...

 ... oci_result($query_stmt,

 desired_val_from_current_row) ...

 }

• While oci_fetch returns a "truthy" value, there has been a row fetched that can have its values obtained
using oci_result in the body of the loop --

CS 328 - Week 10 Lab Exercise - 2025-04-03/04 p. 2

So, after requesting a database connection (which returns a connection object if successful):
 $conn = oci_connect(username: $conn_username,

 password: $ora_php_password,

 connection_string: null,

 encoding: 'AL32UTF8',

 session_mode: OCI_DEFAULT);

then requesting the set-up for a desired query statement (which returns a statement object if successful):
 $date_query_str = "select sysdate

 from dual";

 $date_stmt = oci_parse($conn, $date_query_str);

then requesting that the statement object's statement be executed:
 oci_execute($date_stmt, OCI_DEFAULT);

we could request that the first row in that executed query statement be fetched:
 oci_fetch($date_stmt);

and obtain the 1st value in the fetched/current row:
 <p> Today's date is <?= oci_result($date_stmt, 1) ?> </p>

and then, since we have fetched all of the desired rows (since this particular query always returns exactly one
row), we are done with this statement, so we request that this statement be freed:
 oci_free_statement($date_stmt);

and, when THIS particular PHP response is finished using the database connection, it explicitly closes that
connection using:
 oci_close($conn);

CLASS STYLE STANDARD: a PHP using OCI to connect to the Oracle student database is expected to
always explicitly close that connection, using oci_close, before completing its response.

It was also mentioned that oci_fetch -- while it does NOT return the fetched row -- does return a value that
is considered "truthy" if there was another row to fetch, and returns a value that is considered "falsey" if there
were no more rows in the query result to be fetched.

This means that a while loop works very well for handling the rows resulting from a query statement:
 while (oci_fetch($query_stmt))

 {

 ...

 ... oci_result($query_stmt,

 desired_val_from_current_row) ...

 }

• While oci_fetch returns a "truthy" value, there has been a row fetched that can have its values obtained
using oci_result in the body of the loop --

CS 328 - Week 10 Lab Exercise - 2025-04-03/04 p. 3

• ...and when oci_fetch returns a "falsey" value, that fetch attempt failed (there were no more rows to
fetch), and so exiting the loop at that point is just what we want.

(And you would follow this loop with the appropriate oci_free_statement call, proceed with any other
database actions this PHP is to take to complete its response, and then call oci_close to close the database
connection object before its completes its response.)

Now, do the following:

• Consider the empl table (from set-up-ex-tbls.sql) and write a select statement that selects at
least THREE rows projecting at least TWO different columns.

In your 328lab10.php, BETWEEN the statements:
 oci_free_statement($date_stmt);

/* here --> */

 oci_close($conn);

...ADD the following:

• Declare a string variable $empl_select that contains a select statement that selects at least THREE
rows projecting at least TWO different columns from the empl table.

• Call oci_parse for that query string, storing the resulting statement object into a variable $empl_stmt.

• Call oci_execute to execute this query (to execute this statement).

• Start an HTML table element, with an appropriate caption element and a row of appropriate table header
elements (with scope="col").

• Now LOOP through your query's results, using oci_fetch and oci_result, outputting a table row of
the resulting employee information for each row in the queried result.

• AFTER the loop:

– Appropriately end your HTML table element

– THEN call oci_free_statement to free your $empl_stmt.

(And your oci_close($conn); statement should be AFTER all of the above.)

Run your 328lab10.php -- you should see a table of your query's results.

Strict-validate your 328lab10.php's result by running it from a browser, viewing its source, copying and
pasting that source into a file named 328lab10.xhtml, and put the URL of your 328lab10..xhtml into
the validator.

Submit your resulting 328lab10.php and 328lab10.xhtml with a lab number of 90. (If you created the
optional lab10.css, submit it, also.)

CS 328 - Week 10 Lab Exercise - 2025-04-03/04 p. 3

• ...and when oci_fetch returns a "falsey" value, that fetch attempt failed (there were no more rows to
fetch), and so exiting the loop at that point is just what we want.

(And you would follow this loop with the appropriate oci_free_statement call, proceed with any other
database actions this PHP is to take to complete its response, and then call oci_close to close the database
connection object before its completes its response.)

Now, do the following:

• Consider the empl table (from set-up-ex-tbls.sql) and write a select statement that selects at
least THREE rows projecting at least TWO different columns.

In your 328lab10.php, BETWEEN the statements:
 oci_free_statement($date_stmt);

/* here --> */

 oci_close($conn);

...ADD the following:

• Declare a string variable $empl_select that contains a select statement that selects at least THREE
rows projecting at least TWO different columns from the empl table.

• Call oci_parse for that query string, storing the resulting statement object into a variable $empl_stmt.

• Call oci_execute to execute this query (to execute this statement).

• Start an HTML table element, with an appropriate caption element and a row of appropriate table header
elements (with scope="col").

• Now LOOP through your query's results, using oci_fetch and oci_result, outputting a table row of
the resulting employee information for each row in the queried result.

• AFTER the loop:

– Appropriately end your HTML table element

– THEN call oci_free_statement to free your $empl_stmt.

(And your oci_close($conn); statement should be AFTER all of the above.)

Run your 328lab10.php -- you should see a table of your query's results.

Strict-validate your 328lab10.php's result by running it from a browser, viewing its source, copying and
pasting that source into a file named 328lab10.xhtml, and put the URL of your 328lab10..xhtml into
the validator.

Submit your resulting 328lab10.php and 328lab10.xhtml with a lab number of 90. (If you created the
optional lab10.css, submit it, also.)

	Deadline
	Purpose
	How to submit
	Requirements
	Problem 1 - Start your file 328lab10.php
	Problem 2 - looping through the results of a query that returns multiple rows

