
CS 328 - PHP - OCI function oci_commit p. 1 of 1
last modified: 2025-04-09

Basics of PHP - OCI function oci_commit
From CS 325, you should remember that the SQL command:

commit;

...is supposed to make the current databse state PERMANENT. SQL provides this, along with
rollback;, to support TRANSACTIONS, logical units of work, completely done or completely NOT
done.

You should also remember that Oracle sqlplus does some auto-commits on your behalf:

• whenever the database structure changes, and

• when you log out "properly" from sqlplus.

So, if you haven't explicitly typed commit; before exiting your sqlplus session, the assumption is
that you want that session's changes to be committed.

QUESTION, then: on the application tier, WHEN should
changes be committed?

Java's JDBC (Java Database Connectivity) library assumes that each individual change is to be auto-
committed unless you indicate otherwise. But this assumption means you cannot use rollback to undo
multiple changes that may have been made by a transaction-in-progress if it runs into problems.

With OCI, it appears that this is determined by the second argument to oci_execute. When you use
OCI_DEFAULT as oci_execute's second argument,, this specifies to NOT auto-commit after each
individual change, but to instead wait for a commit to be explicitly requested. This is a better choice for
supporting transaction integrity.

OCI provides a function oci_commit to make this explicit commit request. It expects a connection
object, and has the side-effect of requesting that a commit be done. For example:

oci_commit($conn); // assuming $conn contains a connection object
 // as returned by oci_connect

So: if you have a PHP document using OCI, and it requests any SQL actions that change the database
(such as an insert, update, or delete), that PHP document should call oci_commit once it
believes the current logical transaction is successfully completed and reasonable to commit.

Oh, and if you forget? Then that PHP document's changes are NOT committed to the database...!

(And, OCI also provides a function oci_rollback, that also expects a connection object, and has the
side-effect of requesting that a rollback be done to the last previous committed state.)

CS 328 - PHP - OCI function oci_commit p. 1 of 1
last modified: 2025-04-09

Basics of PHP - OCI function oci_commit
From CS 325, you should remember that the SQL command:

commit;

...is supposed to make the current databse state PERMANENT. SQL provides this, along with
rollback;, to support TRANSACTIONS, logical units of work, completely done or completely NOT
done.

You should also remember that Oracle sqlplus does some auto-commits on your behalf:

• whenever the database structure changes, and

• when you log out "properly" from sqlplus.

So, if you haven't explicitly typed commit; before exiting your sqlplus session, the assumption is
that you want that session's changes to be committed.

QUESTION, then: on the application tier, WHEN should
changes be committed?

Java's JDBC (Java Database Connectivity) library assumes that each individual change is to be auto-
committed unless you indicate otherwise. But this assumption means you cannot use rollback to undo
multiple changes that may have been made by a transaction-in-progress if it runs into problems.

With OCI, it appears that this is determined by the second argument to oci_execute. When you use
OCI_DEFAULT as oci_execute's second argument,, this specifies to NOT auto-commit after each
individual change, but to instead wait for a commit to be explicitly requested. This is a better choice for
supporting transaction integrity.

OCI provides a function oci_commit to make this explicit commit request. It expects a connection
object, and has the side-effect of requesting that a commit be done. For example:

oci_commit($conn); // assuming $conn contains a connection object
 // as returned by oci_connect

So: if you have a PHP document using OCI, and it requests any SQL actions that change the database
(such as an insert, update, or delete), that PHP document should call oci_commit once it
believes the current logical transaction is successfully completed and reasonable to commit.

Oh, and if you forget? Then that PHP document's changes are NOT committed to the database...!

(And, OCI also provides a function oci_rollback, that also expects a connection object, and has the
side-effect of requesting that a rollback be done to the last previous committed state.)

	QUESTION, then: on the application tier, WHEN should changes be committed?

