
Some string-, date-, and time-related SQL functions p. 1
last modified: 2025-02-11 - Sharon Tuttle

Some string- and date- and time-related SQL functions
(adapted from CS 325 - Reading Packet: "Simple Reports - Parts 1 and 2")

Sources:
• Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.

• Classic Oracle example tables empl and dept, adapted somewhat over the years

Below are some Oracle functions related to strings, dates, and times that can be handy in creating
more-readable/"prettier" queries and reports. It is not an exhaustive coverage; the goal is to give you
some idea of the possibilities (so you can explore further as inspiration strikes you).

NOTE that these can also be called in PL/SQL statements as well!

Suggestion:
To get a better feel for these functions and how to use them, I recommend that you have sqlplus open
as you are reading through this, and try the examples using these tables along the way. It is even better
if you try out additional calls of these functions as you think of different possibilities for how they
might be used.

On nrs-projects.humboldt.edu, you can get a copy of the adapted versions of Oracle tables empl and
dept used in these example by using the following command at the nrs-projects prompt while in the
directory you wish to work in:

cp ~st10/set-up-ex-tbls.sql . # notice the SPACE and PERIOD at the end!
...and then run this SQL script set-up-ex-tbls.sql in sqlplus.

Reminder: concatenation
The operator || can be used to combine one or more string literals or columns, projecting the combined
result as a single column. So, for example, the following query projects a single column, combining
each employee last name, a ', $', and employee salary:
select empl_last_name || ', $' || salary "Pay Info"
from empl
order by empl_last_name;

Assuming that the empl table has the contents inserted by the SQL script set-up-ex-tbls.sql, the
above query will result in:
Pay Info
--
Adams, $1100
Blake, $2850
Ford, $3000
James, $950
Jones, $2975
King, $5000

Some string-, date-, and time-related SQL functions p. 1
last modified: 2025-02-11 - Sharon Tuttle

Some string- and date- and time-related SQL functions
(adapted from CS 325 - Reading Packet: "Simple Reports - Parts 1 and 2")

Sources:
• Oracle9i Programming: A Primer, Rajshekhar Sunderraman, Addison Wesley.

• Classic Oracle example tables empl and dept, adapted somewhat over the years

Below are some Oracle functions related to strings, dates, and times that can be handy in creating
more-readable/"prettier" queries and reports. It is not an exhaustive coverage; the goal is to give you
some idea of the possibilities (so you can explore further as inspiration strikes you).

NOTE that these can also be called in PL/SQL statements as well!

Suggestion:
To get a better feel for these functions and how to use them, I recommend that you have sqlplus open
as you are reading through this, and try the examples using these tables along the way. It is even better
if you try out additional calls of these functions as you think of different possibilities for how they
might be used.

On nrs-projects.humboldt.edu, you can get a copy of the adapted versions of Oracle tables empl and
dept used in these example by using the following command at the nrs-projects prompt while in the
directory you wish to work in:

cp ~st10/set-up-ex-tbls.sql . # notice the SPACE and PERIOD at the end!
...and then run this SQL script set-up-ex-tbls.sql in sqlplus.

Reminder: concatenation
The operator || can be used to combine one or more string literals or columns, projecting the combined
result as a single column. So, for example, the following query projects a single column, combining
each employee last name, a ', $', and employee salary:
select empl_last_name || ', $' || salary "Pay Info"
from empl
order by empl_last_name;

Assuming that the empl table has the contents inserted by the SQL script set-up-ex-tbls.sql, the
above query will result in:
Pay Info
--
Adams, $1100
Blake, $2850
Ford, $3000
James, $950
Jones, $2975
King, $5000

Some string-, date-, and time-related SQL functions p. 2
last modified: 2025-02-11 - Sharon Tuttle

Martin, $1250
Michaels, $1600
Miller, $1300
Raimi, $2450
Scott, $3000

Pay Info
--
Smith, $800
Turner, $1500
Ward, $1250

14 rows selected.

When creating a report, concatenation can frequently be used to create more-readable results. As just a
few examples:

* if you have first and last names for people, and you wish to display them alphabetically (as in a
class role, or a phone directory), it looks good to concatenate them last name first, with a comma
in-between:

select last_name || ', ' || first_name "Name"
from ...
where ...
order by last_name;

...which might look like:

Name

Adams, Annie
Cartwright, Josh
Zeff, Pat

* ...although for a mailing list, or name tags, etc., you'd probably prefer to have the first name first,
and maybe you'd even order them by first name:

select first_name || ' ' || last_name "Attendees"
from ...
where ...
order by last_name;

...which might look like:

Attendees

Annie Adams
Josh Cartwright
Pat Zeff

* and many combinations of street, city, state, and zip columns are possible:

select city || ', ' || state || ' ' || zip

Some string-, date-, and time-related SQL functions p. 2
last modified: 2025-02-11 - Sharon Tuttle

Martin, $1250
Michaels, $1600
Miller, $1300
Raimi, $2450
Scott, $3000

Pay Info
--
Smith, $800
Turner, $1500
Ward, $1250

14 rows selected.

When creating a report, concatenation can frequently be used to create more-readable results. As just a
few examples:

* if you have first and last names for people, and you wish to display them alphabetically (as in a
class role, or a phone directory), it looks good to concatenate them last name first, with a comma
in-between:

select last_name || ', ' || first_name "Name"
from ...
where ...
order by last_name;

...which might look like:

Name

Adams, Annie
Cartwright, Josh
Zeff, Pat

* ...although for a mailing list, or name tags, etc., you'd probably prefer to have the first name first,
and maybe you'd even order them by first name:

select first_name || ' ' || last_name "Attendees"
from ...
where ...
order by last_name;

...which might look like:

Attendees

Annie Adams
Josh Cartwright
Pat Zeff

* and many combinations of street, city, state, and zip columns are possible:

select city || ', ' || state || ' ' || zip

Some string-, date-, and time-related SQL functions p. 3
last modified: 2025-02-11 - Sharon Tuttle

from ...
where ...

select zip || '-' || city
from ...
where ...

select state || ': ' || city
from ...
where ...

...etc., and these can be ordered by city and then zip, by state and then city and then zip, by zip, by
some other column (such as last name or department or salary or hiredate), etc., depending on what
is appropriate for that query.

Reminder: date-related function: sysdate
Remember that SQL function sysdate returns the current date:
insert into empl(empl_num, empl_last_name, job_title, mgr, hiredate, salary,
 dept_num)
values
('6745', 'Zeff', 'Analyst', '7566', sysdate, 3000, '200');

...and the hiredate for Zeff will be the date that this insertion was performed. And sysdate can be used
in a select as well -- this simply projects the current date for each row in the "dummy" table dual,
which only has one column and one row, and so simply projects the current date. So if I run the
following on February 11, 2025:
select sysdate
from dual;

....then the result would be:
SYSDATE

11-FEB-25

Date- and time-related function: to_char
Oracle function to_char expects a date or a number and a format string, and it returns a character-
string version of the given date or number based on that given format.

A complete coverage of all of the possibilities for the format string is beyond the scope of this
introduction, but you can easily find out more on the Web. Here are a few examples, though, to give
you some ideas of the the possibilities:

For example, this will project just the month of the given date, projecting that month as the entire name
of that month:
select empl_last_name, to_char(hiredate, 'MONTH') "MONTH HIRED"
from empl;

Some string-, date-, and time-related SQL functions p. 3
last modified: 2025-02-11 - Sharon Tuttle

from ...
where ...

select zip || '-' || city
from ...
where ...

select state || ': ' || city
from ...
where ...

...etc., and these can be ordered by city and then zip, by state and then city and then zip, by zip, by
some other column (such as last name or department or salary or hiredate), etc., depending on what
is appropriate for that query.

Reminder: date-related function: sysdate
Remember that SQL function sysdate returns the current date:
insert into empl(empl_num, empl_last_name, job_title, mgr, hiredate, salary,
 dept_num)
values
('6745', 'Zeff', 'Analyst', '7566', sysdate, 3000, '200');

...and the hiredate for Zeff will be the date that this insertion was performed. And sysdate can be used
in a select as well -- this simply projects the current date for each row in the "dummy" table dual,
which only has one column and one row, and so simply projects the current date. So if I run the
following on February 11, 2025:
select sysdate
from dual;

....then the result would be:
SYSDATE

11-FEB-25

Date- and time-related function: to_char
Oracle function to_char expects a date or a number and a format string, and it returns a character-
string version of the given date or number based on that given format.

A complete coverage of all of the possibilities for the format string is beyond the scope of this
introduction, but you can easily find out more on the Web. Here are a few examples, though, to give
you some ideas of the the possibilities:

For example, this will project just the month of the given date, projecting that month as the entire name
of that month:
select empl_last_name, to_char(hiredate, 'MONTH') "MONTH HIRED"
from empl;

Some string-, date-, and time-related SQL functions p. 4
last modified: 2025-02-11 - Sharon Tuttle

...resulting in:
EMPL_LAST_NAME MONTH HIR
--------------- ---------
King NOVEMBER
Jones APRIL
Blake MAY
Raimi JUNE
Ford DECEMBER
Smith DECEMBER
Michaels FEBRUARY
Ward FEBRUARY
Martin SEPTEMBER
Scott NOVEMBER
Turner SEPTEMBER

EMPL_LAST_NAME MONTH HIR
--------------- ---------
Adams SEPTEMBER
James DECEMBER
Miller JANUARY
Zeff FEBRUARY

15 rows selected.

If you'd like the month with an uppercase first letter and lowercase letter for the rest, use the format
string 'Month' (and here we'll use a column command, too, to get a non-chopped heading):

col hiremonth heading "Month Hired" format a11

select empl_last_name "Last Name", to_char(hiredate, 'Month') hiremonth
from empl;

...resulting in:

Last Name Month Hired
--------------- -----------
King November
Jones April
Blake May
Raimi June
Ford December
Smith December
Michaels February
Ward February
Martin September
Scott November
Turner September

Last Name Month Hired
--------------- -----------
Adams September
James December
Miller January
Zeff February

Some string-, date-, and time-related SQL functions p. 4
last modified: 2025-02-11 - Sharon Tuttle

...resulting in:
EMPL_LAST_NAME MONTH HIR
--------------- ---------
King NOVEMBER
Jones APRIL
Blake MAY
Raimi JUNE
Ford DECEMBER
Smith DECEMBER
Michaels FEBRUARY
Ward FEBRUARY
Martin SEPTEMBER
Scott NOVEMBER
Turner SEPTEMBER

EMPL_LAST_NAME MONTH HIR
--------------- ---------
Adams SEPTEMBER
James DECEMBER
Miller JANUARY
Zeff FEBRUARY

15 rows selected.

If you'd like the month with an uppercase first letter and lowercase letter for the rest, use the format
string 'Month' (and here we'll use a column command, too, to get a non-chopped heading):

col hiremonth heading "Month Hired" format a11

select empl_last_name "Last Name", to_char(hiredate, 'Month') hiremonth
from empl;

...resulting in:

Last Name Month Hired
--------------- -----------
King November
Jones April
Blake May
Raimi June
Ford December
Smith December
Michaels February
Ward February
Martin September
Scott November
Turner September

Last Name Month Hired
--------------- -----------
Adams September
James December
Miller January
Zeff February

Some string-, date-, and time-related SQL functions p. 5
last modified: 2025-02-11 - Sharon Tuttle

15 rows selected.

These format examples could easily get a bit long-winded, so here are a few more examples all in one
query (and some of these also show how you can include some literals in the format strings, too):

col mon_year format a8
col long_version format a29
col brief_versn format a17

select to_char(sysdate, 'YYYY') year,
 to_char(sysdate, 'Mon YYYY') mon_year,
 to_char(sysdate, 'MM-DD-YY') num_version,
 to_char(sysdate, 'Day, Month DD, YYYY') long_version,
 to_char(sysdate, 'DY - Mon DD - YY') brief_versn
from dual;

Granted, sometimes you get surprises -- when run on 2025-02-11, the above results in:

YEAR MON_YEAR NUM_VERS LONG_VERSION BRIEF_VERSN
---- -------- -------- ----------------------------- -----------------
2025 Feb 2025 02-11-25 Tuesday , February 11, 2025 TUE - Feb 11 - 25

I think the "gaps" are based on including the space needed for the "longest" weekday and month names;
there are string functions you can use to get rid of such spaces, which we'll discuss shortly, for times
when you don't want those gaps.

Here is a summary of some of the available date-related format strings for use in a to_char format
string:

'MM' - month number
'MON' - the first 3 letters of the month name, all-uppercase
'Mon' - the first 3 letters of the month name, mixed case
'MONTH' - the entire month name, all-uppercase
'Month' - the entire month name, mixed case
'DAY' - fully spelled out day of the week, all-uppercase
'Day' - fully spelled out day of the week, mixed case
'DY' - 3-letter abbreviation of the day of the week, all-uppercase
'Dy' - 3-letter abbreviation of the day of the week, mixed case
'DD' - date of the month, written as a 2-digit number
'YY' - the last two digits of the year
'YYYY' - the year written out in four digits

even:

'D' - number of date's day in the current week (Sunday is 1)
'DD' - number of date's day in the current month
'DDD' - number of date's day in the current year

Now, why did I say that to_char was a time-related function as well? Because, although it is not
obvious, you can store both a date and a time in a column of type DATE -- and you can then project the
time information of a given date with format strings such as:

Some string-, date-, and time-related SQL functions p. 5
last modified: 2025-02-11 - Sharon Tuttle

15 rows selected.

These format examples could easily get a bit long-winded, so here are a few more examples all in one
query (and some of these also show how you can include some literals in the format strings, too):

col mon_year format a8
col long_version format a29
col brief_versn format a17

select to_char(sysdate, 'YYYY') year,
 to_char(sysdate, 'Mon YYYY') mon_year,
 to_char(sysdate, 'MM-DD-YY') num_version,
 to_char(sysdate, 'Day, Month DD, YYYY') long_version,
 to_char(sysdate, 'DY - Mon DD - YY') brief_versn
from dual;

Granted, sometimes you get surprises -- when run on 2025-02-11, the above results in:

YEAR MON_YEAR NUM_VERS LONG_VERSION BRIEF_VERSN
---- -------- -------- ----------------------------- -----------------
2025 Feb 2025 02-11-25 Tuesday , February 11, 2025 TUE - Feb 11 - 25

I think the "gaps" are based on including the space needed for the "longest" weekday and month names;
there are string functions you can use to get rid of such spaces, which we'll discuss shortly, for times
when you don't want those gaps.

Here is a summary of some of the available date-related format strings for use in a to_char format
string:

'MM' - month number
'MON' - the first 3 letters of the month name, all-uppercase
'Mon' - the first 3 letters of the month name, mixed case
'MONTH' - the entire month name, all-uppercase
'Month' - the entire month name, mixed case
'DAY' - fully spelled out day of the week, all-uppercase
'Day' - fully spelled out day of the week, mixed case
'DY' - 3-letter abbreviation of the day of the week, all-uppercase
'Dy' - 3-letter abbreviation of the day of the week, mixed case
'DD' - date of the month, written as a 2-digit number
'YY' - the last two digits of the year
'YYYY' - the year written out in four digits

even:

'D' - number of date's day in the current week (Sunday is 1)
'DD' - number of date's day in the current month
'DDD' - number of date's day in the current year

Now, why did I say that to_char was a time-related function as well? Because, although it is not
obvious, you can store both a date and a time in a column of type DATE -- and you can then project the
time information of a given date with format strings such as:

Some string-, date-, and time-related SQL functions p. 6
last modified: 2025-02-11 - Sharon Tuttle

'HH12' - hours of the day (1-12)
'HH24' - hours of the day (0-23)
'MI' - minutes of the hour
'SS' - seconds of the minute
'AM' - displays AM or PM depending on the time

...and when I ran the following at about 10:31 am on Tuesday, February 11, 2025:

select to_char(sysdate, 'D DD DDD Day, Mon YYYY - HH12 HH24 MI SS AM') "UGLY"
from dual;

...the result was:
UGLY
--
3 11 042 Tuesday , Feb 2025 - 10 10 31 35 AM

a few more examples of date-related operations and functions

function to_date
Have you noticed yet that the Oracle Date type supports + and -? If you add a number to a date, the
result is the date that results from adding that number of days to that date! If run on February 11, 2025,
then:

select sysdate + 1
from dual;

...results in:

SYSDATE+1

12-FEB-25

Now, you'll find that this addition or subtraction will work fine with a column declared to be a date --
but what if, for whatever reason, you want to add or subtract from a date literal? (Or if you want to use
some date function given a date literal?) You'll find that the string that you use for insertion will not
work:

-- FAILS!!

select '31-DEC-18' + 1
from dual;

...with the error message:

ERROR at line 1:
ORA-01722: invalid number

But:

Some string-, date-, and time-related SQL functions p. 6
last modified: 2025-02-11 - Sharon Tuttle

'HH12' - hours of the day (1-12)
'HH24' - hours of the day (0-23)
'MI' - minutes of the hour
'SS' - seconds of the minute
'AM' - displays AM or PM depending on the time

...and when I ran the following at about 10:31 am on Tuesday, February 11, 2025:

select to_char(sysdate, 'D DD DDD Day, Mon YYYY - HH12 HH24 MI SS AM') "UGLY"
from dual;

...the result was:
UGLY
--
3 11 042 Tuesday , Feb 2025 - 10 10 31 35 AM

a few more examples of date-related operations and functions

function to_date
Have you noticed yet that the Oracle Date type supports + and -? If you add a number to a date, the
result is the date that results from adding that number of days to that date! If run on February 11, 2025,
then:

select sysdate + 1
from dual;

...results in:

SYSDATE+1

12-FEB-25

Now, you'll find that this addition or subtraction will work fine with a column declared to be a date --
but what if, for whatever reason, you want to add or subtract from a date literal? (Or if you want to use
some date function given a date literal?) You'll find that the string that you use for insertion will not
work:

-- FAILS!!

select '31-DEC-18' + 1
from dual;

...with the error message:

ERROR at line 1:
ORA-01722: invalid number

But:

Some string-, date-, and time-related SQL functions p. 7
last modified: 2025-02-11 - Sharon Tuttle

to_date - expects a date-string, and returns the corresponding date

...can allow you to do this: (and this example now demonstrates how, yes, the month and year
boundaries are indeed handled reasonably):

select to_date('31-DEC-18') + 1
from dual;

...results in:

TO_DATE('

01-JAN-19

function next_day
next_day - expects a date and a string representing the day of the week, and returns the date of the

next date after the given date that is on that day of the week

If you remember that February 11, 2025 was a Tuesday, then:

select next_day('11-Feb-2025', 'TUESDAY') nxt_tues,
 next_day('11-Feb-2025', 'MONDAY') nxt_mon,
 next_day('11-Feb-2025', 'FRIDAY') nxt_fri
from dual;

...results in:

NXT_TUES NXT_MON NXT_FRI
--------- --------- ---------
18-FEB-25 17-FEB-25 14-FEB-25

functions add_months and months_between
add_months - expects a date and a number of months, and results in the date that many months from

the given date;
months_between - expects two dates, and returns the number of months between those two dates

(positive if the first date is later than the second, negative otherwise)

select add_months('30-Jan-25', 1) one_mth_later,
 months_between('15-Apr-25', '15-Jan-25') diff1,
 months_between('15-Apr-25', '01-Jun-25') diff2
from dual;

...results in:

ONE_MTH_L DIFF1 DIFF2
--------- ---------- ----------
28-FEB-25 3 -1.5483871

Some string-, date-, and time-related SQL functions p. 7
last modified: 2025-02-11 - Sharon Tuttle

to_date - expects a date-string, and returns the corresponding date

...can allow you to do this: (and this example now demonstrates how, yes, the month and year
boundaries are indeed handled reasonably):

select to_date('31-DEC-18') + 1
from dual;

...results in:

TO_DATE('

01-JAN-19

function next_day
next_day - expects a date and a string representing the day of the week, and returns the date of the

next date after the given date that is on that day of the week

If you remember that February 11, 2025 was a Tuesday, then:

select next_day('11-Feb-2025', 'TUESDAY') nxt_tues,
 next_day('11-Feb-2025', 'MONDAY') nxt_mon,
 next_day('11-Feb-2025', 'FRIDAY') nxt_fri
from dual;

...results in:

NXT_TUES NXT_MON NXT_FRI
--------- --------- ---------
18-FEB-25 17-FEB-25 14-FEB-25

functions add_months and months_between
add_months - expects a date and a number of months, and results in the date that many months from

the given date;
months_between - expects two dates, and returns the number of months between those two dates

(positive if the first date is later than the second, negative otherwise)

select add_months('30-Jan-25', 1) one_mth_later,
 months_between('15-Apr-25', '15-Jan-25') diff1,
 months_between('15-Apr-25', '01-Jun-25') diff2
from dual;

...results in:

ONE_MTH_L DIFF1 DIFF2
--------- ---------- ----------
28-FEB-25 3 -1.5483871

Some string-, date-, and time-related SQL functions p. 8
last modified: 2025-02-11 - Sharon Tuttle

A few string-related functions

function initcap
initcap - expects a string, and returns a string with an initial uppercase letter

select initcap('SILLY') looky
from dual;

...results in:

LOOKY

Silly

functions lower and upper
lower - expects a string, and returns an all-lowercase version of your string
upper - expects a string, and returns an all-uppercase version of your string

select lower(empl_last_name), upper(empl_last_name)
from empl
where job_title = 'President';

...results in:

LOWER(EMPL_LAST UPPER(EMPL_LAST
--------------- ---------------
king KING

functions lpad and rpad
lpad - "left pad" - expects a string, a desired length, and a padding character, and returns a string that is

the given string padded on the left with the given padding character to result in a string with the
desired length

rpad - "right pad" - expects a string, a desired length, and a padding character, and returns a string that
is the given string padded on the right with the given padding character to result in a string with the
desired length

col dots format a12 tru
col huh format a15 tru
col right_justif format a12 tru

select lpad(empl_last_name, 12, '.') dots, rpad(empl_last_name, 15, '?') huh,
 lpad(empl_last_name, 12, ' ') right_justifd
from empl;

...results in:

DOTS HUH RIGHT_JUSTIF
------------ --------------- ------------
........King King??????????? King

Some string-, date-, and time-related SQL functions p. 8
last modified: 2025-02-11 - Sharon Tuttle

A few string-related functions

function initcap
initcap - expects a string, and returns a string with an initial uppercase letter

select initcap('SILLY') looky
from dual;

...results in:

LOOKY

Silly

functions lower and upper
lower - expects a string, and returns an all-lowercase version of your string
upper - expects a string, and returns an all-uppercase version of your string

select lower(empl_last_name), upper(empl_last_name)
from empl
where job_title = 'President';

...results in:

LOWER(EMPL_LAST UPPER(EMPL_LAST
--------------- ---------------
king KING

functions lpad and rpad
lpad - "left pad" - expects a string, a desired length, and a padding character, and returns a string that is

the given string padded on the left with the given padding character to result in a string with the
desired length

rpad - "right pad" - expects a string, a desired length, and a padding character, and returns a string that
is the given string padded on the right with the given padding character to result in a string with the
desired length

col dots format a12 tru
col huh format a15 tru
col right_justif format a12 tru

select lpad(empl_last_name, 12, '.') dots, rpad(empl_last_name, 15, '?') huh,
 lpad(empl_last_name, 12, ' ') right_justifd
from empl;

...results in:

DOTS HUH RIGHT_JUSTIF
------------ --------------- ------------
........King King??????????? King

Some string-, date-, and time-related SQL functions p. 9
last modified: 2025-02-11 - Sharon Tuttle

.......Jones Jones?????????? Jones

.......Blake Blake?????????? Blake

.......Raimi Raimi?????????? Raimi

........Ford Ford??????????? Ford

.......Smith Smith?????????? Smith

....Michaels Michaels??????? Michaels

........Ward Ward??????????? Ward

......Martin Martin????????? Martin

.......Scott Scott?????????? Scott

......Turner Turner????????? Turner

DOTS HUH RIGHT_JUSTIF
------------ --------------- ------------
.......Adams Adams?????????? Adams
.......James James?????????? James
......Miller Miller????????? Miller
........Zeff Zeff??????????? Zeff

15 rows selected.

And, of course, if a function returns a string, then a call to that function can be used wherever a string is
permitted, including within another function call:

col "Hiredate" format a28

select lpad(to_char(hiredate, 'Day'), 14, ' ') ||
 to_char(hiredate, '- Month YY') "Hiredate"
from empl;

...which results in:

Hiredate

 Thursday - November 11
 Monday - April 12
 Wednesday- May 13
 Saturday - June 12
 Monday - December 12
 Monday - December 12
 Tuesday - February 18
 Friday - February 19
 Friday - September 18
 Friday - November 18
 Sunday - September 19

Hiredate

 Sunday - September 18
 Sunday - December 17
 Saturday - January 16
 Thursday - November 19

15 rows selected.

Some string-, date-, and time-related SQL functions p. 9
last modified: 2025-02-11 - Sharon Tuttle

.......Jones Jones?????????? Jones

.......Blake Blake?????????? Blake

.......Raimi Raimi?????????? Raimi

........Ford Ford??????????? Ford

.......Smith Smith?????????? Smith

....Michaels Michaels??????? Michaels

........Ward Ward??????????? Ward

......Martin Martin????????? Martin

.......Scott Scott?????????? Scott

......Turner Turner????????? Turner

DOTS HUH RIGHT_JUSTIF
------------ --------------- ------------
.......Adams Adams?????????? Adams
.......James James?????????? James
......Miller Miller????????? Miller
........Zeff Zeff??????????? Zeff

15 rows selected.

And, of course, if a function returns a string, then a call to that function can be used wherever a string is
permitted, including within another function call:

col "Hiredate" format a28

select lpad(to_char(hiredate, 'Day'), 14, ' ') ||
 to_char(hiredate, '- Month YY') "Hiredate"
from empl;

...which results in:

Hiredate

 Thursday - November 11
 Monday - April 12
 Wednesday- May 13
 Saturday - June 12
 Monday - December 12
 Monday - December 12
 Tuesday - February 18
 Friday - February 19
 Friday - September 18
 Friday - November 18
 Sunday - September 19

Hiredate

 Sunday - September 18
 Sunday - December 17
 Saturday - January 16
 Thursday - November 19

15 rows selected.

Some string-, date-, and time-related SQL functions p. 10
last modified: 2025-02-11 - Sharon Tuttle

functions ltrim and rtrim
ltrim - expects a string, returns that string with any leading blanks (blanks starting the string) removed
rtrim - expects a string, returns that string with any trailing banks (blanks ending the string) removed

col nicer format a30

select ltrim(' Hi ') lftchop, rtrim(' Hi ') rtchop,
 rtrim(to_char(sysdate, 'Day')) || ', ' || rtrim(to_char(sysdate, 'Month'))
 || ' ' || to_char(sysdate, 'DD, YYYY') nicer
from dual;

...which, when run on 2025-02-11, resulted in:

LFTCH RTCHO NICER
----- ----- ------------------------------
Hi Hi Tuesday, February 11, 2025

functions length and substr
length - expects a string, and returns the number of character in that string (its length)
substr - expects a string, the position to start at in that string (where the first character is position 1),

and how long a substring is desired, and returns the substring of that length starting at that
position.

 (if the 3rd argument is omitted, it returns the rest of the string starting at the given position)

col abb1 format a3
col rest format a13

select empl_last_name,
 length(empl_last_name) length,
 substr(empl_last_name, 1, 3) abb1,
 substr(empl_last_name, 3) rest
from empl;

...which results in:

EMPL_LAST_NAME LENGTH ABB REST
--------------- ---------- --- -------------
King 4 Kin ng
Jones 5 Jon nes
Blake 5 Bla ake
Raimi 5 Rai imi
Ford 4 For rd
Smith 5 Smi ith
Michaels 8 Mic chaels
Ward 4 War rd
Martin 6 Mar rtin
Scott 5 Sco ott
Turner 6 Tur rner

EMPL_LAST_NAME LENGTH ABB REST
--------------- ---------- --- -------------
Adams 5 Ada ams

Some string-, date-, and time-related SQL functions p. 10
last modified: 2025-02-11 - Sharon Tuttle

functions ltrim and rtrim
ltrim - expects a string, returns that string with any leading blanks (blanks starting the string) removed
rtrim - expects a string, returns that string with any trailing banks (blanks ending the string) removed

col nicer format a30

select ltrim(' Hi ') lftchop, rtrim(' Hi ') rtchop,
 rtrim(to_char(sysdate, 'Day')) || ', ' || rtrim(to_char(sysdate, 'Month'))
 || ' ' || to_char(sysdate, 'DD, YYYY') nicer
from dual;

...which, when run on 2025-02-11, resulted in:

LFTCH RTCHO NICER
----- ----- ------------------------------
Hi Hi Tuesday, February 11, 2025

functions length and substr
length - expects a string, and returns the number of character in that string (its length)
substr - expects a string, the position to start at in that string (where the first character is position 1),

and how long a substring is desired, and returns the substring of that length starting at that
position.

 (if the 3rd argument is omitted, it returns the rest of the string starting at the given position)

col abb1 format a3
col rest format a13

select empl_last_name,
 length(empl_last_name) length,
 substr(empl_last_name, 1, 3) abb1,
 substr(empl_last_name, 3) rest
from empl;

...which results in:

EMPL_LAST_NAME LENGTH ABB REST
--------------- ---------- --- -------------
King 4 Kin ng
Jones 5 Jon nes
Blake 5 Bla ake
Raimi 5 Rai imi
Ford 4 For rd
Smith 5 Smi ith
Michaels 8 Mic chaels
Ward 4 War rd
Martin 6 Mar rtin
Scott 5 Sco ott
Turner 6 Tur rner

EMPL_LAST_NAME LENGTH ABB REST
--------------- ---------- --- -------------
Adams 5 Ada ams

Some string-, date-, and time-related SQL functions p. 11
last modified: 2025-02-11 - Sharon Tuttle

James 5 Jam mes
Miller 6 Mil ller
Zeff 4 Zef ff

15 rows selected.

Again, please note: this is not an exhaustive list of the additional functions that Oracle provides. But it
hopefully gives you an idea of the rich set of possibilities available.

Some string-, date-, and time-related SQL functions p. 11
last modified: 2025-02-11 - Sharon Tuttle

James 5 Jam mes
Miller 6 Mil ller
Zeff 4 Zef ff

15 rows selected.

Again, please note: this is not an exhaustive list of the additional functions that Oracle provides. But it
hopefully gives you an idea of the rich set of possibilities available.

	Sources:
	Suggestion:
	Reminder: concatenation
	Reminder: date-related function: sysdate
	Date- and time-related function: to_char
	a few more examples of date-related operations and functions
	function to_date
	function next_day
	functions add_months and months_between

	A few string-related functions
	function initcap
	functions lower and upper
	functions lpad and rpad
	functions ltrim and rtrim
	functions length and substr

